Unet Segmentation in Keras TensorFlow
🎥 Unet Segmentation in Keras TensorFlow
👁 1 раз ⏳ 2116 сек.
🎥 Unet Segmentation in Keras TensorFlow
👁 1 раз ⏳ 2116 сек.
About: This video is all about the most popular and widely used Segmentation Model called UNET. UNet is built for biomedical Image Segmentation. It is base model for any segmentation task. It follows a encoder decoder approach. It used skip connection to get the local information during down sampling path,
and use it during upsampling path.
The UNet is built using Keras TensorFlow.
# ======================================================
CODE: https://github.com/nikhilroxtomar/UNet-Segmentation-in-Ke
Vk
Unet Segmentation in Keras TensorFlow
About: This video is all about the most popular and widely used Segmentation Model called UNET. UNet is built for biomedical Image Segmentation. It is base model for any segmentation task. It follows a encoder decoder approach. It used skip connection to…
🔗 4 Machine Learning Techniques with Python – Rinu Gour – Medium
4 Machine Learning Techniques with Python
4 Machine Learning Techniques with Python
Medium
4 Machine Learning Techniques with Python
4 Machine Learning Techniques with Python
This is a super cool resource: Papers With Code now includes 950+ ML tasks, 500+ evaluation tables (including SOTA results) and 8500+ papers with code. Probably the largest collection of NLP tasks I've seen including 140+ tasks and 100 datasets.
https://paperswithcode.com/sota
🔗 Browse the State-of-the-Art in Machine Learning
522 leaderboards • 967 tasks • 708 datasets • 9199 papers with code.
https://paperswithcode.com/sota
🔗 Browse the State-of-the-Art in Machine Learning
522 leaderboards • 967 tasks • 708 datasets • 9199 papers with code.
GitHub
Papers with code
Papers with code has 13 repositories available. Follow their code on GitHub.
Matplotlib Tutorial: Learn basics of Python’s powerful Plotting library
https://towardsdatascience.com/matplotlib-tutorial-learn-basics-of-pythons-powerful-plotting-library-b5d1b8f67596?source=collection_home---4------1---------------------
https://towardsdatascience.com/matplotlib-tutorial-learn-basics-of-pythons-powerful-plotting-library-b5d1b8f67596?source=collection_home---4------1---------------------
Towards Data Science
Matplotlib Tutorial: Learn basics of Python’s powerful Plotting library
Learn to visualize your data using Python’s Matplotlib library.
Machine Learning Chatbot with Tensorflow
🎥 Machine Learning Chatbot with Tensorflow
👁 1 раз ⏳ 1044 сек.
🎥 Machine Learning Chatbot with Tensorflow
👁 1 раз ⏳ 1044 сек.
In this video, I’ll share the GitHub project I followed along to build a chatbot.
If you want the full tutorial, you can find it on Sentdex https://pythonprogramming.net/chatbot-deep-learning-python-tensorflow/
Here are the content links of this video. You can find it on out github at
https://github.com/KnowledgeMavens/chatbot
Build Your Own Chatbot
Can be used to for Twitter - Charles the AI - https://twitter.com/Charles_the_AI?lang=en
Build custom chatbot
Download Dataset https://www.reddit.com/r/datas
Vk
Machine Learning Chatbot with Tensorflow
In this video, I’ll share the GitHub project I followed along to build a chatbot.
If you want the full tutorial, you can find it on Sentdex https://pythonprogramming.net/chatbot-deep-learning-python-tensorflow/
Here are the content links of this video.…
If you want the full tutorial, you can find it on Sentdex https://pythonprogramming.net/chatbot-deep-learning-python-tensorflow/
Here are the content links of this video.…
The power of deeper networks for expressing natural functions”,
Rolnick and Tegmark: https://arxiv.org/abs/1705.05502
#artificalintelligence #deeplearning #machinelearning
🔗 The power of deeper networks for expressing natural functions
Rolnick and Tegmark: https://arxiv.org/abs/1705.05502
#artificalintelligence #deeplearning #machinelearning
🔗 The power of deeper networks for expressing natural functions
Kaggle PLAsTiCC: классификация космических объектов — Сергей Злобин
🎥 Kaggle PLAsTiCC: классификация космических объектов — Сергей Злобин
👁 1 раз ⏳ 2265 сек.
🎥 Kaggle PLAsTiCC: классификация космических объектов — Сергей Злобин
👁 1 раз ⏳ 2265 сек.
Сергей Злобин рассказывает про задачу классификации космических объектов (Kaggle PLAsTiCC Astronomical Classification), в которой Сергею вместе с его командой не хватило всего одного места до золота. Из видео вы сможете узнать про признаки на основе подгонки кривых под точки, аугментацию астрономических данных и эвристические правки предсказаний отдельных классов.
Слайды: https://gh.mltrainings.ru/presentations/Zlobin_KagglePlasticc_2019.pdf
Узнать о текущих соревнованиях можно на сайте http://mltraining
Vk
Kaggle PLAsTiCC: классификация космических объектов — Сергей Злобин
Сергей Злобин рассказывает про задачу классификации космических объектов (Kaggle PLAsTiCC Astronomical Classification), в которой Сергею вместе с его командой не хватило всего одного места до золота. Из видео вы сможете узнать про признаки на основе подгонки…
Model-Free Prediction: Reinforcement Learning
https://towardsdatascience.com/model-free-prediction-reinforcement-learning-507297e8e2ad?source=collection_home---4------1---------------------
https://towardsdatascience.com/model-free-prediction-reinforcement-learning-507297e8e2ad?source=collection_home---4------1---------------------
Towards Data Science
Model-Free Prediction: Reinforcement Learning
Part 4: Model-Free Predictions with Monte-Carlo Learning, Temporal-Difference Learning and TD( λ)
So many papers applying deep learning to theoretical and experimental physics!
Fascinating.
https://physicsml.github.io/pages/papers.html
🔗 Papers | 〈 physics | machine learning 〉
Fascinating.
https://physicsml.github.io/pages/papers.html
🔗 Papers | 〈 physics | machine learning 〉
Amazing Machine Learning Open Source of the Year (v.2019)
https://medium.mybridge.co/amazing-machine-learning-open-source-tools-projects-of-the-year-v-2019-95d772e4e985
🔗 Amazing Machine Learning Open Source Tools & Projects of the Year (v.2019)
For the past year, we’ve compared nearly 22,000 Machine Learning open source tools and projects to pick Top 49 (0.22% chance).
https://medium.mybridge.co/amazing-machine-learning-open-source-tools-projects-of-the-year-v-2019-95d772e4e985
🔗 Amazing Machine Learning Open Source Tools & Projects of the Year (v.2019)
For the past year, we’ve compared nearly 22,000 Machine Learning open source tools and projects to pick Top 49 (0.22% chance).
Medium
Amazing Machine Learning Open Source of the Year (v.2019)
49 Tools & Projects. Avg Github ⭐️: 3,566.
https://habr.com/ru/company/mailru/blog/438392/
Краткая история одной «умной ленты»
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Краткая история одной «умной ленты»
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Хабр
Краткая история одной «умной ленты»
Социальные сети — это один из наиболее востребованных на сегодняшний день интернет-продуктов и один из основных источников данных для анализа. Внутри же самих...
Improving Evolutionary Strategies with Generative Neural Networks
https://arxiv.org/abs/1901.11271
🔗 Improving Evolutionary Strategies with Generative Neural Networks
Evolutionary Strategies (ES) are a popular family of black-box zeroth-order optimization algorithms which rely on search distributions to efficiently optimize a large variety of objective functions. This paper investigates the potential benefits of using highly flexible search distributions in classical ES algorithms, in contrast to standard ones (typically Gaussians). We model such distributions with Generative Neural Networks (GNNs) and introduce a new training algorithm that leverages their expressiveness to accelerate the ES procedure. We show that this tailored algorithm can readily incorporate existing ES algorithms, and outperforms the state-of-the-art on diverse objective functions.
https://arxiv.org/abs/1901.11271
🔗 Improving Evolutionary Strategies with Generative Neural Networks
Evolutionary Strategies (ES) are a popular family of black-box zeroth-order optimization algorithms which rely on search distributions to efficiently optimize a large variety of objective functions. This paper investigates the potential benefits of using highly flexible search distributions in classical ES algorithms, in contrast to standard ones (typically Gaussians). We model such distributions with Generative Neural Networks (GNNs) and introduce a new training algorithm that leverages their expressiveness to accelerate the ES procedure. We show that this tailored algorithm can readily incorporate existing ES algorithms, and outperforms the state-of-the-art on diverse objective functions.
arXiv.org
Improving Evolutionary Strategies with Generative Neural Networks
Evolutionary Strategies (ES) are a popular family of black-box zeroth-order
optimization algorithms which rely on search distributions to efficiently
optimize a large variety of objective...
optimization algorithms which rely on search distributions to efficiently
optimize a large variety of objective...
Article Image
Understanding Neural ODE's
https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-odes.html
🔗 Understanding Neural ODE's
In this blogpost I explore how ODE’s can be used to solve data modelling problems. I take a deep dive into the data modelling problem at hand and present ODE’s (which model rates of change) as an a...
Understanding Neural ODE's
https://jontysinai.github.io/jekyll/update/2019/01/18/understanding-neural-odes.html
🔗 Understanding Neural ODE's
In this blogpost I explore how ODE’s can be used to solve data modelling problems. I take a deep dive into the data modelling problem at hand and present ODE’s (which model rates of change) as an a...
jontysinai.github.io
Understanding Neural ODE's - Jonty Sinai
In this blogpost I explore how ODE’s can be used to solve data modelling problems. I take a deep dive into the data modelling problem at hand and present ODE...
Maximum Likelihood Estimation
🔗 Maximum Likelihood Estimation – Towards Data Science
Fundamentals of Machine Learning (Part 2)
🔗 Maximum Likelihood Estimation – Towards Data Science
Fundamentals of Machine Learning (Part 2)
Towards Data Science
Maximum Likelihood Estimation
Fundamentals of Machine Learning (Part 2)
Building a Neural Network Only Using NumPy
🔗 Building a Neural Network Only Using NumPy – Lukas Frei – Medium
Using Andrew Ng’s Project Structure to Build a Neural Net in Python
🔗 Building a Neural Network Only Using NumPy – Lukas Frei – Medium
Using Andrew Ng’s Project Structure to Build a Neural Net in Python
Medium
Building a Neural Network Only Using NumPy
Using Andrew Ng’s Project Structure to Build a Neural Net in Python
Can neural networks learn commonsense reasoning?
ATOMIC | An Atlas of Machine Commonsense for If-Then Reasoning: https://homes.cs.washington.edu/~msap/atomic/
🔗 ATOMIC Knowledge Graph Browser
ATOMIC | An Atlas of Machine Commonsense for If-Then Reasoning: https://homes.cs.washington.edu/~msap/atomic/
🔗 ATOMIC Knowledge Graph Browser
Making deep neural networks paint to understand how they work
https://towardsdatascience.com/making-deep-neural-networks-paint-to-understand-how-they-work-4be0901582ee?source=collection_home---4------0---------------------
https://towardsdatascience.com/making-deep-neural-networks-paint-to-understand-how-they-work-4be0901582ee?source=collection_home---4------0---------------------
Towards Data Science
Making deep neural networks paint to understand how they work
Generate abstract art in 100 lines of PyTorch code and explore how neural networks work
Machine Learning Tutorial Python - 13: K Means Clustering
🔗 Machine Learning Tutorial Python - 13: K Means Clustering
Code: https://github.com/codebasics/py/blob/master/ML/13_kmeans/13_kmeans_tutorial.ipynb K Means algorithm is unsupervised machine learning technique used to...
🔗 Machine Learning Tutorial Python - 13: K Means Clustering
Code: https://github.com/codebasics/py/blob/master/ML/13_kmeans/13_kmeans_tutorial.ipynb K Means algorithm is unsupervised machine learning technique used to...
YouTube
Machine Learning Tutorial Python - 13: K Means Clustering Algorithm
K Means clustering algorithm is unsupervised machine learning technique used to cluster data points. In this tutorial we will go over some theory behind how k means works and then solve income group clustering problem using sklearn, kmeans and python. Elbow…