🎥 Tiresias: Predicting Security Events Through Deep Learning
👁 1 раз ⏳ 1427 сек.
👁 1 раз ⏳ 1427 сек.
Previous research in predicting malicious events only looked at binary outcomes (eg. whether an attack would happen or not), but not at the specific steps that an attacker would undertake. To fill this gap we present Tiresias xspace, a system that leverages Recurrent Neural Networks (RNNs) to predict future events on a machine, based on previous observations.
Read this paper in the ACM Digital Library: https://dl.acm.org/citation.cfm?id=3243811
Vk
Tiresias: Predicting Security Events Through Deep Learning
Previous research in predicting malicious events only looked at binary outcomes (eg. whether an attack would happen or not), but not at the specific steps that an attacker would undertake. To fill this gap we present Tiresias xspace, a system that leverages…
🎥 10 глупых вопросов РУКОВОДИТЕЛЮ ЯНДЕКС.ПОИСКА
👁 6 раз ⏳ 1173 сек.
👁 6 раз ⏳ 1173 сек.
Новый гость "10 глупых вопросов" – руководитель Поиска Яндекса Андрей Стыскин. Мы задали Андрею самые глупые вопросы о работе Поиска, личных данных и получили на них умные ответы.
Подписка Яндекс.Плюс на месяц (пробный период) для всех подписчиков канала ЖИЗА: https://ya.cc/52uOI
ЖИЗА в Instagram: https://www.instagram.com/zhiza_show
FAQ – почему мы не озвучиваем вопросы: https://goo.gl/X1mJZV
Другие выпуски «10 глупых вопросов»:
-ветеринар https://goo.gl/WBjJQd
-мультипликатор https://goo.gl/n7obfz
-пр
Vk
10 глупых вопросов РУКОВОДИТЕЛЮ ЯНДЕКС.ПОИСКА
Новый гость "10 глупых вопросов" – руководитель Поиска Яндекса Андрей Стыскин. Мы задали Андрею самые глупые вопросы о работе Поиска, личных данных и получили на них умные ответы.
Подписка Яндекс.Плюс на месяц (пробный период) для всех подписчиков канала…
Подписка Яндекс.Плюс на месяц (пробный период) для всех подписчиков канала…
🎥 Neural networks interactively - right in your browser! - Piotr Migdał - code::dive 2018
👁 1 раз ⏳ 3840 сек.
👁 1 раз ⏳ 3840 сек.
Deep learning (artificial neural networks) is progressing at a rapid pace. In the last few years, image recognition performance went from not useful to on a par with human level. Lately, AlphaGo Zero not only beat human masters, but was able to do so entirely learning by playing with itself. And it keeps going; something that was an original discovery 6 months ago may have become an industry baseline.
Moreover, it is relatively easy to start using deep learning - using Python libraries such as Keras or PyT
Vk
Neural networks interactively - right in your browser! - Piotr Migdał - code::dive 2018
Deep learning (artificial neural networks) is progressing at a rapid pace. In the last few years, image recognition performance went from not useful to on a par with human level. Lately, AlphaGo Zero not only beat human masters, but was able to do so entirely…
AI Learns Real-Time Defocus Effects in VR
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
https://www.youtube.com/watch?v=Ljgszx4tudo
🎥 AI Learns Real-Time Defocus Effects in VR
👁 1 раз ⏳ 260 сек.
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
https://www.youtube.com/watch?v=Ljgszx4tudo
🎥 AI Learns Real-Time Defocus Effects in VR
👁 1 раз ⏳ 260 сек.
The paper "DeepFocus: Learned Image Synthesis for Computational Displays" and its source code is available here:
https://research.fb.com/publications/deepfocus-siggraph-asia-2018/
https://www.oculus.com/blog/introducing-deepfocus-the-ai-rendering-system-powering-half-dome/
https://github.com/facebookresearch/DeepFocus
Pick up cool perks on our Patreon page:
› https://www.patreon.com/TwoMinutePapers
We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
313V, Alex Haro,
Telegram
Machinelearning
Погружаемся в машинное обучение и Data Science
Показываем как запускать любые LLm на пальцах.
По всем вопросам - @haarrp
@itchannels_telegram -🔥best channels
Реестр РКН: clck.ru/3Fmqri
Показываем как запускать любые LLm на пальцах.
По всем вопросам - @haarrp
@itchannels_telegram -🔥best channels
Реестр РКН: clck.ru/3Fmqri
Mapping knowledge with digital tools to solve healthcare problems in the 21st century
https://towardsdatascience.com/mapping-knowledge-with-digital-tools-to-solve-healthcare-problems-in-the-21st-century-21a19a51c81d?source=collection_home---4------1---------------------
🔗 404 Not Found
https://towardsdatascience.com/mapping-knowledge-with-digital-tools-to-solve-healthcare-problems-in-the-21st-century-21a19a51c81d?source=collection_home---4------1---------------------
🔗 404 Not Found
Towards Data Science
Mapping knowledge with digital tools to solve healthcare problems in the 21st century
An essay for Toptal’s scholarship to empower future female leaders
Открытый урок «Машинное обучение для всех»
🔗 Открытый урок «Машинное обучение для всех»
Вебинар по Data Science с участием преподавателя Moscow Coding School.
🔗 Открытый урок «Машинное обучение для всех»
Вебинар по Data Science с участием преподавателя Moscow Coding School.
YouTube
Открытый урок «Машинное обучение для всех»
Вебинар по Data Science с участием преподавателя Moscow Coding School.
ABY3: A Mixed Protocol Framework for Machine Learning
🔗 ABY3: A Mixed Protocol Framework for Machine Learning
Machine learning is widely used to produce models for a range of applications and is increasingly offered as a service by major technology companies. However...
🔗 ABY3: A Mixed Protocol Framework for Machine Learning
Machine learning is widely used to produce models for a range of applications and is increasingly offered as a service by major technology companies. However...
YouTube
ABY3: A Mixed Protocol Framework for Machine Learning
Machine learning is widely used to produce models for a range of applications and is increasingly offered as a service by major technology companies. However...
Get hands-on with Explainable AI at Machine Learning Interpretability(MLI) Gym!
🔗 Get hands-on with Explainable AI at Machine Learning Interpretability(MLI) Gym!
This meetup was recorded in Mountain View, California on January 24th 2019. Slides from the meetup can be viewed here: https://www.slideshare.net/0xdata/get-...
🔗 Get hands-on with Explainable AI at Machine Learning Interpretability(MLI) Gym!
This meetup was recorded in Mountain View, California on January 24th 2019. Slides from the meetup can be viewed here: https://www.slideshare.net/0xdata/get-...
YouTube
Get hands-on with Explainable AI at Machine Learning Interpretability(MLI) Gym!
This meetup was recorded in Mountain View, California on January 24th 2019. Slides from the meetup can be viewed here: https://www.slideshare.net/0xdata/get-...
s this the BEST BOOK on Machine Learning? Hands On Machine Learning Review
🎥 Is this the BEST BOOK on Machine Learning? Hands On Machine Learning Review
👁 1 раз ⏳ 331 сек.
🎥 Is this the BEST BOOK on Machine Learning? Hands On Machine Learning Review
👁 1 раз ⏳ 331 сек.
Hands On Machine Learning with Scikit Learn and Tensorflow published by O'Reilly and written by Aurelien Geron could just be the best practical book on machine learning. In this review I explain why.
You can buy the book from my Amazon Page ►https://www.amazon.com/shop/pythonprogrammer (affiliate links)
►Subscribe to my YouTube Channel http://bit.ly/2LCdOy1
SUPPORT MY CHANNEL
►Buy me a coffee https://www.ko-fi.com/S6S7LZYP
Programming Learning Resources
Coursera https://www.coursera.org/specializations
Vk
Is this the BEST BOOK on Machine Learning? Hands On Machine Learning Review
Hands On Machine Learning with Scikit Learn and Tensorflow published by O'Reilly and written by Aurelien Geron could just be the best practical book on machine learning. In this review I explain why.
You can buy the book from my Amazon Page ►https://ww…
You can buy the book from my Amazon Page ►https://ww…
🎥 Machine Learning With Tensor Flow | Recurrent Neural Networks | Part 3| Eduonix
👁 1 раз ⏳ 980 сек.
👁 1 раз ⏳ 980 сек.
A recurrent neural network (RNN) is a type of artificial neural network commonly used in speech recognition and natural language processing (NLP). RNNs are designed to recognize a data's sequential characteristics and use patterns to predict the next likely scenario. In this video, you will go through the Basics and give the overall explanation of what it is and how it works. Let's learn!!
Want to learn Machine Learning With TensorFlow in Detail? Check out our course Machine Learning With TensorFlow The Pr
Vk
Machine Learning With Tensor Flow | Recurrent Neural Networks | Part 3| Eduonix
A recurrent neural network (RNN) is a type of artificial neural network commonly used in speech recognition and natural language processing (NLP). RNNs are designed to recognize a data's sequential characteristics and use patterns to predict the next likely…
Тест Тьюринга на конференции OpenTalks.AI !
3-й всероссийский конкурс русскоговорящих чат-ботов в формате теста Тьюринга пройдет на конференции OpenTalks.AI! Конкурс организует «Лаборатория Наносемантика» и OpenTalks.AI при поддержке компании МТС, Серебряного партнера конференции!
Компании-победители получат призы:
• 1 место – 200,000 руб.
• 2 место – 150,000 руб.
• 3 место – 100,000 руб.
Каждый желающий может стать экспертом в этом конкурсе, для этого необходимо зарегистрироваться в Телеграм боте @TuringTestRussiaBot и в период с 14 по 16 февраля поговорить в этом чате с несколькими собеседниками и потом угадать, с кем Вы разговаривали – с человеком или ботом. Наиболее активные эксперты, которые угадают точнее всего, получат призы:
• 1 место – 20,000 руб.
• 2 место – 15,000 руб.
• 3 место – 10,000 руб.
Конкурс будет проходить 14-16 февраля, объявление результатов и награждение победителей состоится на конференции 16 февраля. Подробности и регистрация участников - на странице конкурса http://opentalks.ai/ru/turing-test
🔗 OpenTalks.AI - Тест Тьюринга
OpenTalks.AI - Тест Тьюринга
3-й всероссийский конкурс русскоговорящих чат-ботов в формате теста Тьюринга пройдет на конференции OpenTalks.AI! Конкурс организует «Лаборатория Наносемантика» и OpenTalks.AI при поддержке компании МТС, Серебряного партнера конференции!
Компании-победители получат призы:
• 1 место – 200,000 руб.
• 2 место – 150,000 руб.
• 3 место – 100,000 руб.
Каждый желающий может стать экспертом в этом конкурсе, для этого необходимо зарегистрироваться в Телеграм боте @TuringTestRussiaBot и в период с 14 по 16 февраля поговорить в этом чате с несколькими собеседниками и потом угадать, с кем Вы разговаривали – с человеком или ботом. Наиболее активные эксперты, которые угадают точнее всего, получат призы:
• 1 место – 20,000 руб.
• 2 место – 15,000 руб.
• 3 место – 10,000 руб.
Конкурс будет проходить 14-16 февраля, объявление результатов и награждение победителей состоится на конференции 16 февраля. Подробности и регистрация участников - на странице конкурса http://opentalks.ai/ru/turing-test
🔗 OpenTalks.AI - Тест Тьюринга
OpenTalks.AI - Тест Тьюринга
opentalks.ai
OpenTalks.AI - Тест Тьюринга
🎥 MERA - ML meetup - Jan 2019 - Погружение в Machine Learning. Участвуем в Kaggle соревнованиях!
👁 1 раз ⏳ 1862 сек.
👁 1 раз ⏳ 1862 сек.
Выступление Антона Чивкунова на митапе MERA по машинному обучению. Когда ты начинаешь свой путь в области Data Science и Machine Learning, поражает обилие разных материалов для самостоятельного изучения, но без навыков применения все эти знания малого стоят. Где же взять этот опыт применения машинного обучения на реальных «взрослых» задачах? Тут нам на помощь приходит сервис Kaggle со своей облачной средой разработки/выполнения и действительно крутым сообществом Data Science инженеров. На примере участия в
Vk
MERA - ML meetup - Jan 2019 - Погружение в Machine Learning. Участвуем в Kaggle соревнованиях!
Выступление Антона Чивкунова на митапе MERA по машинному обучению. Когда ты начинаешь свой путь в области Data Science и Machine Learning, поражает обилие разных материалов для самостоятельного изучения, но без навыков применения все эти знания малого стоят.…
I Built My Own Self-Driving Car. Part #3
In the last article, I have introduced you to a very simple lane detection with OpenCV. Taking into account the simplicity, it was doing well. However, it was not up to my expectations. Looks like the current solution that I am going to show you today does not get better unless you want switch to the Recurrent Convolutional Neural Networks (and this is exactly what I am up to). We are going to talk about a way to get better results based on the Hough Transform method output.
#programming #IT #artificialintellegence #developer #HaarCascade #Python #OpenCV #MadDevs
https://blog.maddevs.io/i-built-my-own-self-driving-car-part-3-1ca1d85e9d59
🔗 I Built My Own Self-Driving Car. Part #3 – Mad Devs
In the last article, I have introduced you to a very simple lane detection with OpenCV. Taking into account the simplicity, it was doing well. However, it was not up to my expectations. Looks like the current solution that I am going to show you today does not get better unless you want switch to the Recurrent Convolutional Neural Networks (and this is exactly what I am up to). We are going to talk about a way to get better results based on the Hough Transform method output.
#programming #IT #artificialintellegence #developer #HaarCascade #Python #OpenCV #MadDevs
https://blog.maddevs.io/i-built-my-own-self-driving-car-part-3-1ca1d85e9d59
🔗 I Built My Own Self-Driving Car. Part #3 – Mad Devs
I Built My Own Self-Driving Car. Part #2
In my last article, I have played around with OpenCV and Haar Cascade Classifier in order to detect vehicles. It did not perform very well though. There were many false predictions and the FPS could not get above 15. Today I will introduce you to the third version of the YOLO algorithm developed for the Darknet and ported to Tensorflow and Keras so we can use a nice and shiny Python environment. We are not going to train our own model today and use pre-trained weights.
#programming #IT #artificialintellegence #developer #HaarCascade #Python #OpenCV #MadDevs
https://blog.maddevs.io/i-built-my-own-self-driving-car-part-2-e3894ce4eb42
🔗 I Built My Own Self-Driving Car. Part #2 – Mad Devs
In my last article, I have played around with OpenCV and Haar Cascade Classifier in order to detect vehicles. It did not perform very well though. There were many false predictions and the FPS could not get above 15. Today I will introduce you to the third version of the YOLO algorithm developed for the Darknet and ported to Tensorflow and Keras so we can use a nice and shiny Python environment. We are not going to train our own model today and use pre-trained weights.
#programming #IT #artificialintellegence #developer #HaarCascade #Python #OpenCV #MadDevs
https://blog.maddevs.io/i-built-my-own-self-driving-car-part-2-e3894ce4eb42
🔗 I Built My Own Self-Driving Car. Part #2 – Mad Devs
New interesting research from Facebook about simulating focus effect with DNN
https://research.fb.com/publications/deepfocus-siggraph-asia-2018/
🔗 DeepFocus: Learned Image Synthesis for Computational Displays
In this paper, we introduce DeepFocus, a generic, end-to-end convolutional neural network designed to efficiently solve the full range of computational tasks for accommodation-supporting HMDs. This network is demonstrated to accurately synthesize defocus blur, focal stacks, multilayer decompositions, and multiview imagery using only commonly available RGB-D images, enabling real-time, near-correct depictions of retinal blur with a broad set of accommodation-supporting HMDs.
https://research.fb.com/publications/deepfocus-siggraph-asia-2018/
🔗 DeepFocus: Learned Image Synthesis for Computational Displays
In this paper, we introduce DeepFocus, a generic, end-to-end convolutional neural network designed to efficiently solve the full range of computational tasks for accommodation-supporting HMDs. This network is demonstrated to accurately synthesize defocus blur, focal stacks, multilayer decompositions, and multiview imagery using only commonly available RGB-D images, enabling real-time, near-correct depictions of retinal blur with a broad set of accommodation-supporting HMDs.
Facebook Research
DeepFocus: Learned Image Synthesis for Computational Displays - Facebook Research
In this paper, we introduce DeepFocus, a generic, end-to-end convolutional neural network designed to efficiently solve the full range of computational tasks for accommodation-supporting HMDs. This network is demonstrated to accurately synthesize defocus…
Applied Deep Learning with PyTorch - Full Course
🎥 Applied Deep Learning with PyTorch - Full Course
👁 1 раз ⏳ 20404 сек.
🎥 Applied Deep Learning with PyTorch - Full Course
👁 1 раз ⏳ 20404 сек.
In this course you will learn the key concepts behind deep learning and how to apply the concepts to a real-life project using PyTorch and Python.
You'll learn the following:
⌨️ RNNs and LSTMs
⌨️ Sequence Modeling
⌨️ PyTorch
⌨️ Building a Chatbot in PyTorch
⭐️Requirements ⭐️
⌨️ Some Basic High School Mathematics
⌨️ Some Basic Programming Knowledge
⌨️ Some basic Knowledge about Neural Networks
⭐️Contents ⭐️
⌨️ (0:00:08) Recurrent Nerual Networks - RNNs and LSTMs
⌨️ (0:35:54) Sequence-To-Sequence Models
⌨️
Vk
Applied Deep Learning with PyTorch - Full Course
In this course you will learn the key concepts behind deep learning and how to apply the concepts to a real-life project using PyTorch and Python.
You'll learn the following:
⌨️ RNNs and LSTMs
⌨️ Sequence Modeling
⌨️ PyTorch
⌨️ Building a Chatbot in PyTorch…
You'll learn the following:
⌨️ RNNs and LSTMs
⌨️ Sequence Modeling
⌨️ PyTorch
⌨️ Building a Chatbot in PyTorch…
Hands-On with Unsupervised Learning
A quick tutorial on k-means clustering and principal component analysis (PCA).
🔗 Hands-On with Unsupervised Learning – Towards Data Science
A quick tutorial on k-means clustering and principal component analysis (PCA).
A quick tutorial on k-means clustering and principal component analysis (PCA).
🔗 Hands-On with Unsupervised Learning – Towards Data Science
A quick tutorial on k-means clustering and principal component analysis (PCA).
Towards Data Science
Hands-On with Unsupervised Learning
A quick tutorial on k-means clustering and principal component analysis (PCA).
Building an Experimentation Framework for Composite Algorithms
🔗 Building an Experimentation Framework for Composite Algorithms
Its often very useful to develop a framework quickly on top of an existing ML Library for changing the model hyper-parameters and blending…
🔗 Building an Experimentation Framework for Composite Algorithms
Its often very useful to develop a framework quickly on top of an existing ML Library for changing the model hyper-parameters and blending…
Towards Data Science
Building an Experimentation Framework for Composite Algorithms
Its often very useful to develop a framework quickly on top of an existing ML Library for changing the model hyper-parameters and blending…
Modernizing Life Science Manufacturing with AWS Machine Learning
🔗 Modernizing Life Science Manufacturing with AWS Machine Learning
Learn more about Pharma & Biotech in the Cloud - https://amzn.to/2CWCmhc In this webinar, you will hear from the pharmaceutical manufacturer Novo Nordisk, an...
🔗 Modernizing Life Science Manufacturing with AWS Machine Learning
Learn more about Pharma & Biotech in the Cloud - https://amzn.to/2CWCmhc In this webinar, you will hear from the pharmaceutical manufacturer Novo Nordisk, an...
YouTube
Modernizing Life Science Manufacturing with AWS Machine Learning
Learn more about Pharma & Biotech in the Cloud - https://amzn.to/2CWCmhc In this webinar, you will hear from the pharmaceutical manufacturer Novo Nordisk, an...