Нe стoй в cтoронe!
Oбвинения в наркоторгoвле корреcпондентa « Mедyзы» — cамый проcтой и дeйcтвенный споcoб посaдить чeлoвeкa. В Pосси – этo нopмaльноe явлениe посадить на дoлгoe вpемя чeлoвeкa, кoтopый выпoлняя cвoю роботy, рaскpывaя прaвдy o коpрyпции, мaхинaцияx cветит угoлoвноe дeлo. Hаpoд, пoдымaет бунт, они бoятьcя, чтo их могут тaк жe зaкpыть нa долгoe вpeмя. Вeдь каждый можeт окaзаться на eго меcте! В Рocсии coтни тысяч людeй нeвинoвныx cидят, вce пoтoмy чтo кoмy-тo еcть, что cкpывaть. Oни бояться, чтo все иx тaйнoe cтанeт явным. Bот и пoдкидывaют нapкотики, избывaют, cадят лишь бы они зaмoлчaли как прoисхoдит этo с Гoлyнoвым.
Ecли Teбe плeвать тo знaй, зaвтpа a мecтe Гoлyновa можeт окaзаться твой дpуг!
Oбвинения в наркоторгoвле корреcпондентa « Mедyзы» — cамый проcтой и дeйcтвенный споcoб посaдить чeлoвeкa. В Pосси – этo нopмaльноe явлениe посадить на дoлгoe вpемя чeлoвeкa, кoтopый выпoлняя cвoю роботy, рaскpывaя прaвдy o коpрyпции, мaхинaцияx cветит угoлoвноe дeлo. Hаpoд, пoдымaет бунт, они бoятьcя, чтo их могут тaк жe зaкpыть нa долгoe вpeмя. Вeдь каждый можeт окaзаться на eго меcте! В Рocсии coтни тысяч людeй нeвинoвныx cидят, вce пoтoмy чтo кoмy-тo еcть, что cкpывaть. Oни бояться, чтo все иx тaйнoe cтанeт явным. Bот и пoдкидывaют нapкотики, избывaют, cадят лишь бы они зaмoлчaли как прoисхoдит этo с Гoлyнoвым.
Ecли Teбe плeвать тo знaй, зaвтpа a мecтe Гoлyновa можeт окaзаться твой дpуг!
🎥 Develop and Deploy Deep Learning Services at the Edge with IBM
👁 1 раз ⏳ 3741 сек.
👁 1 раз ⏳ 3741 сек.
Learn more about NVIDIA Jetson at https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/embedded/jetson-ibm-webinar-nv-slides
Vk
Develop and Deploy Deep Learning Services at the Edge with IBM
Learn more about NVIDIA Jetson at https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/embedded/jetson-ibm-webinar-nv-slides
https://developer.nvidia.com/embedded/jetson-ibm-webinar-nv-slides
Challenging Common Assumptions in the Unsupervised Learning of Disentangled
Representations https://arxiv.org/pdf/1811.12359.pdf
Representations https://arxiv.org/pdf/1811.12359.pdf
Make your own Recommendation System
🔗 Make your own Recommendation System
Deep dive into what happens behind the scenes when you are busy binge-watching or listening to an automatically curated playlist
🔗 Make your own Recommendation System
Deep dive into what happens behind the scenes when you are busy binge-watching or listening to an automatically curated playlist
Towards Data Science
Make your own Recommendation System
Deep dive into what happens behind the scenes when you are busy binge-watching or listening to an automatically curated playlist
CNN Heat Maps: Class Activation Mapping (CAM)
🔗 CNN Heat Maps: Class Activation Mapping (CAM)
This is the first post in an upcoming series about different techniques for visualizing which parts of an image a CNN is looking at in…
🔗 CNN Heat Maps: Class Activation Mapping (CAM)
This is the first post in an upcoming series about different techniques for visualizing which parts of an image a CNN is looking at in…
Towards Data Science
CNN Heat Maps: Class Activation Mapping (CAM)
This is the first post in an upcoming series about different techniques for visualizing which parts of an image a CNN is looking at in…
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🎥 Use Nvidia’s DeepStream and Transfer Learning Toolkit to Deploy Streaming Analytics at Scale
👁 1 раз ⏳ 3664 сек.
🎥 Use Nvidia’s DeepStream and Transfer Learning Toolkit to Deploy Streaming Analytics at Scale
👁 1 раз ⏳ 3664 сек.
Learn about the latest tools for overcoming the biggest challenges in developing streaming analytics applications for video understanding at scale. NVIDIA’s DeepStream SDK framework frees developers to focus on the core deep learning networks and IP, rather than designing an end-to-end framework from scratch. It’s ideal for building applications for edge devices, workstation appliances, and in the cloud. Process camera images and video for applications such as public safety, retail, traffic, transportation,
🎥 High-Performance Input Pipelines for Scalable Deep Learning
👁 1 раз ⏳ 1646 сек.
👁 1 раз ⏳ 1646 сек.
A production AI system is more than just training a deep learning model. It also includes 1) ingesting and running inference on new data, 2) transformation, processing, and cleaning new data to incorporate it into the training set, 3) continuously retraining to update and continue learning, and 4) experimental pipeline to test improvements to the AI models. This presentation focuses on the importance of high-performance and highly-scalable storage that is needed to take advantage of ever-larger datasets in
Vk
High-Performance Input Pipelines for Scalable Deep Learning
A production AI system is more than just training a deep learning model. It also includes 1) ingesting and running inference on new data, 2) transformation, processing, and cleaning new data to incorporate it into the training set, 3) continuously retraining…
Clear Explanation of DEEP LEARNING by MIT. for who wants to start with deep learning.
1) Introduction to Deep Learning
https://lnkd.in/fJ2-WJm
2) Deep Sequence Modelling
https://lnkd.in/fw6CVus
3) Deep Learning for Computer Vision
https://lnkd.in/fqWUtqd
4) Deep Generative Models
https://lnkd.in/f2_66T2
5) Deep Reinforcement Learning
https://lnkd.in/fVxphZd
6) Limitations and New Frontiers
https://lnkd.in/fKEmBjS
Github Link - https://lnkd.in/fwsKKp4
🔗 MIT 6.S191: Introduction to Deep Learning
MIT Introduction to Deep Learning 6.S191: Lecture 1 *New 2019 Edition* Foundations of Deep Learning Lecturer: Alexander Amini January 2019 For all lectures, ...
1) Introduction to Deep Learning
https://lnkd.in/fJ2-WJm
2) Deep Sequence Modelling
https://lnkd.in/fw6CVus
3) Deep Learning for Computer Vision
https://lnkd.in/fqWUtqd
4) Deep Generative Models
https://lnkd.in/f2_66T2
5) Deep Reinforcement Learning
https://lnkd.in/fVxphZd
6) Limitations and New Frontiers
https://lnkd.in/fKEmBjS
Github Link - https://lnkd.in/fwsKKp4
🔗 MIT 6.S191: Introduction to Deep Learning
MIT Introduction to Deep Learning 6.S191: Lecture 1 *New 2019 Edition* Foundations of Deep Learning Lecturer: Alexander Amini January 2019 For all lectures, ...
lnkd.in
LinkedIn
This link will take you to a page that’s not on LinkedIn
Disentangling Disentanglement in Variational Autoencoders
🔗 Disentangling Disentanglement in Variational Autoencoders
We develop a generalisation of disentanglement in variational autoencoders (VAEs)—decomposition of the latent representation—characterising it as the fulfilment of two factors: a) the latent encodi...
🔗 Disentangling Disentanglement in Variational Autoencoders
We develop a generalisation of disentanglement in variational autoencoders (VAEs)—decomposition of the latent representation—characterising it as the fulfilment of two factors: a) the latent encodi...
PMLR
Disentangling Disentanglement in Variational Autoencoders
We develop a generalisation of disentanglement in variational autoencoders (VAEs)—decomposition of the latent representation—characterising it as the fulfilm...
Может ли разум подделать Вселенную?
Объективная реальность и сами законы физики возникают из наших наблюдений в соответствии с новой концепцией, которая переворачивает с ног на голову то, что мы считаем фундаментальным
.https://habr.com/ru/post/455565/
🔗 Может ли разум подделать Вселенную?
Объективная реальность и сами законы физики возникают из наших наблюдений в соответствии с новой концепцией, которая переворачивает с ног на голову то, что мы сч...
Объективная реальность и сами законы физики возникают из наших наблюдений в соответствии с новой концепцией, которая переворачивает с ног на голову то, что мы считаем фундаментальным
.https://habr.com/ru/post/455565/
🔗 Может ли разум подделать Вселенную?
Объективная реальность и сами законы физики возникают из наших наблюдений в соответствии с новой концепцией, которая переворачивает с ног на голову то, что мы сч...
Хабр
Может ли разум подделать Вселенную?
Объективная реальность и сами законы физики возникают из наших наблюдений в соответствии с новой концепцией, которая переворачивает с ног на голову то, что мы считаем фундаментальным. Софи Хебден FQXi...
rtanno21609/AdaptiveNeuralTrees
🔗 rtanno21609/AdaptiveNeuralTrees
Adaptive Neural Trees . Contribute to rtanno21609/AdaptiveNeuralTrees development by creating an account on GitHub.
🔗 rtanno21609/AdaptiveNeuralTrees
Adaptive Neural Trees . Contribute to rtanno21609/AdaptiveNeuralTrees development by creating an account on GitHub.
GitHub
GitHub - rtanno21609/AdaptiveNeuralTrees: Adaptive Neural Trees
Adaptive Neural Trees . Contribute to rtanno21609/AdaptiveNeuralTrees development by creating an account on GitHub.
Exploratory Data Analysis with Tableau for Classification Problems
🔗 Exploratory Data Analysis with Tableau for Classification Problems
Let’s do EDA to find those groups of customers in the dataset who are better positioned to react in the affirmative to the campaign
🔗 Exploratory Data Analysis with Tableau for Classification Problems
Let’s do EDA to find those groups of customers in the dataset who are better positioned to react in the affirmative to the campaign
Towards Data Science
Exploratory Data Analysis with Tableau for Classification Problems
Let’s do EDA to find those groups of customers in the dataset who are better positioned to react in the affirmative to the campaign
Machine Learning Classification with Python for Direct Marketing
🔗 Machine Learning Classification with Python for Direct Marketing
Let’s create a predictive model to help the telesales team center their efforts on more promising clients first
🔗 Machine Learning Classification with Python for Direct Marketing
Let’s create a predictive model to help the telesales team center their efforts on more promising clients first
Towards Data Science
Machine Learning Classification with Python for Direct Marketing
Let’s create a predictive model to help the telesales team center their efforts on more promising clients first
🎥 Speech Recognition Using Python | Speech To Text Translation in Python | Python Training | Edureka
👁 1 раз ⏳ 1352 сек.
👁 1 раз ⏳ 1352 сек.
** Python Certification Training: https://www.edureka.co/python **
This Edureka video on 'Speech Recognition in Python' will cover the concepts of speech recognition module in python with a program using speech recognition to translate speech into text. Following are the topics discussed:
How Speech Recognition Works?
How To Install SpeechRecognition In Python?
Working With Microphones
How To Install Pyaudio In Python?
Use case
Python Tutorial Playlist: https://goo.gl/WsBpKe
Blog Series: http://bit.ly/2sq
Vk
Speech Recognition Using Python | Speech To Text Translation in Python | Python Training | Edureka
** Python Certification Training: https://www.edureka.co/python **
This Edureka video on 'Speech Recognition in Python' will cover the concepts of speech recognition module in python with a program using speech recognition to translate speech into text. Following…
This Edureka video on 'Speech Recognition in Python' will cover the concepts of speech recognition module in python with a program using speech recognition to translate speech into text. Following…
🎥 Machine Learning In Trading Q&A By Dr. Ernest Chan - June 11, 2019
👁 1 раз ⏳ 3443 сек.
👁 1 раз ⏳ 3443 сек.
Dr. Ernest P Chan is the Managing Member of QTS Capital Management, LLC. He has worked for various investment banks (Morgan Stanley, Credit Suisse, Maple) and hedge funds (Mapleridge, Millennium Partners, MANE) since 1997.
We, at QuantInsti, bring you a Q&A session on Machine Learning in Trading, with Dr. Ernest Chan.
QuantInsti® is one of the pioneer algorithmic trading research and training institutes across the globe. With its educational initiatives, QuantInsti is preparing financial market professio
Vk
Machine Learning In Trading Q&A By Dr. Ernest Chan - June 11, 2019
Dr. Ernest P Chan is the Managing Member of QTS Capital Management, LLC. He has worked for various investment banks (Morgan Stanley, Credit Suisse, Maple) and hedge funds (Mapleridge, Millennium Partners, MANE) since 1997.
We, at QuantInsti, bring you a…
We, at QuantInsti, bring you a…
How to deal with outliers in a noisy population?
🔗 How to deal with outliers in a noisy population?
Defining outliers can be a straight forward task. On the other hand, deciding what to do with them always requires some deeper study.
🔗 How to deal with outliers in a noisy population?
Defining outliers can be a straight forward task. On the other hand, deciding what to do with them always requires some deeper study.
Towards Data Science
How to deal with outliers in a noisy population?
Defining outliers can be a straight forward task. On the other hand, deciding what to do with them always requires some deeper study.
What To Expect From Our Editorial Team
🔗 What To Expect From Our Editorial Team
Our Open Editorial Guidelines
🔗 What To Expect From Our Editorial Team
Our Open Editorial Guidelines
Towards Data Science
What To Expect From Our Editorial Team
Our Open Editorial Guidelines