As it turns out, Wang Ling was way ahead of the curve re NLP's muppet craze (see slides from LxMLS '16 & Oxford #NLP course '17 below).
https://github.com/oxford-cs-deepnlp-2017/lectures
🔗 oxford-cs-deepnlp-2017/lectures
Oxford Deep NLP 2017 course. Contribute to oxford-cs-deepnlp-2017/lectures development by creating an account on GitHub.
https://github.com/oxford-cs-deepnlp-2017/lectures
🔗 oxford-cs-deepnlp-2017/lectures
Oxford Deep NLP 2017 course. Contribute to oxford-cs-deepnlp-2017/lectures development by creating an account on GitHub.
GitHub
GitHub - oxford-cs-deepnlp-2017/lectures: Oxford Deep NLP 2017 course
Oxford Deep NLP 2017 course. Contribute to oxford-cs-deepnlp-2017/lectures development by creating an account on GitHub.
SpeechBrain
A PyTorch-based Speech Toolkit
Video, by Mirco Ravanelli : https://youtube.com/watch?v=XETiKbN9ojE
: https://speechbrain.github.io
#speechbrain #NLP #DeepLearning
🔗 The SpeechBrain Project
SpeechBrain is an open-source and all-in-one speech toolkit relying on PyTorch. The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies
A PyTorch-based Speech Toolkit
Video, by Mirco Ravanelli : https://youtube.com/watch?v=XETiKbN9ojE
: https://speechbrain.github.io
#speechbrain #NLP #DeepLearning
🔗 The SpeechBrain Project
SpeechBrain is an open-source and all-in-one speech toolkit relying on PyTorch. The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies
YouTube
The SpeechBrain Project
SpeechBrain is an open-source and all-in-one speech toolkit relying on PyTorch.
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies
SBERT-WK: A Sentence Embedding Method by Dissecting BERT-based Word Models
Sentence embedding is an important research topic in natural language processing (NLP) since it can transfer knowledge to downstream tasks. Meanwhile, a contextualized word representation, called BERT, achieves the state-of-the-art performance in quite a few NLP tasks.
Yet, it is an open problem to generate a high quality sentence representation from BERT-based word models. It was shown in previous study that different layers of BERT capture different linguistic properties. This allows us to fusion information across layers to find better sentence representation.
[GitHub]
https://github.com/BinWang28/SBERT-WK-Sentence-Embedding
[arXiv]
https://arxiv.org/abs/2002.06652
#ai #artificialintelligence #deeplearning #nlp #nlproc #machinelearning
🔗 BinWang28/SBERT-WK-Sentence-Embedding
Code for Paper: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models - BinWang28/SBERT-WK-Sentence-Embedding
Sentence embedding is an important research topic in natural language processing (NLP) since it can transfer knowledge to downstream tasks. Meanwhile, a contextualized word representation, called BERT, achieves the state-of-the-art performance in quite a few NLP tasks.
Yet, it is an open problem to generate a high quality sentence representation from BERT-based word models. It was shown in previous study that different layers of BERT capture different linguistic properties. This allows us to fusion information across layers to find better sentence representation.
[GitHub]
https://github.com/BinWang28/SBERT-WK-Sentence-Embedding
[arXiv]
https://arxiv.org/abs/2002.06652
#ai #artificialintelligence #deeplearning #nlp #nlproc #machinelearning
🔗 BinWang28/SBERT-WK-Sentence-Embedding
Code for Paper: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models - BinWang28/SBERT-WK-Sentence-Embedding
GitHub
GitHub - BinWang28/SBERT-WK-Sentence-Embedding: IEEE/ACM TASLP 2020: SBERT-WK: A Sentence Embedding Method By Dissecting BERT…
IEEE/ACM TASLP 2020: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models - GitHub - BinWang28/SBERT-WK-Sentence-Embedding: IEEE/ACM TASLP 2020: SBERT-WK: A Sentence Embeddin...
23 апреля в 11:00 пройдет онлайн-конференция «Нас слышат, видят, реагируют: куда движутся технологии?» Технологических конкурсов Up Great.
Конференция посвящена возможностям взаимного обучения человека и компьютера, а также потенциалу технологий распознавания естественного языка и «пониманию» искусственным интеллектом смысла текста.
А еще на конференции вы узнаете подробности о новом техконкурсе Up Great ПРО//ЧТЕНИЕ, участники которого должны будут разработать ИИ, способный находить фактические, логические и смысловые ошибки в текстах. Подать заявку на конкурс можно здесь: https://bit.ly/2YUc3mD
Темы для обсуждения:
🔷 Где, как и зачем нужно развивать технологии коммуникации человека и машины? Как раскрыть и освоить новые области внедрения технологий искусственного интеллекта в сфере распознавания?
🔷 Как устроены лучшие решения мировых игроков? Есть ли у России конкурентное преимущество на международных рынках.
🔷 Какие подходы могут привести к следующем прорыву в обработке естественных языков: «пониманию» смысла и логики в тексте?
Спикеры:
— Михаил Бурцев, заведующий лабораторией нейронных систем и глубокого обучения, МФТИ
— Андрей Устюжанин, руководитель совместных проектов Яндекса и CERN
— Иван Ямщиков, PhD, научный сотрудник Института Макса Планка (Лейпциг, Германия), ИИ-евангелист компании ABBYY, сооснователь Creaited Labs
— Константин Воронцов, доктор физико-математических наук. заведующий лабораторией машинного интеллекта МФТИ
— Константин Кайсин, операционный директор технологических конкурсов Up Great
— Юрий Молодых, директор по развитию технологических конкурсов Up Great
Участие бесплатное. Регистрация по ссылке: https://bit.ly/2Rvstz9
Присоединяйтесь!
#Технологические_конкурсы #Up_Great #НТИ #ИИ #прочтение #machinelearning #nlp
Конференция посвящена возможностям взаимного обучения человека и компьютера, а также потенциалу технологий распознавания естественного языка и «пониманию» искусственным интеллектом смысла текста.
А еще на конференции вы узнаете подробности о новом техконкурсе Up Great ПРО//ЧТЕНИЕ, участники которого должны будут разработать ИИ, способный находить фактические, логические и смысловые ошибки в текстах. Подать заявку на конкурс можно здесь: https://bit.ly/2YUc3mD
Темы для обсуждения:
🔷 Где, как и зачем нужно развивать технологии коммуникации человека и машины? Как раскрыть и освоить новые области внедрения технологий искусственного интеллекта в сфере распознавания?
🔷 Как устроены лучшие решения мировых игроков? Есть ли у России конкурентное преимущество на международных рынках.
🔷 Какие подходы могут привести к следующем прорыву в обработке естественных языков: «пониманию» смысла и логики в тексте?
Спикеры:
— Михаил Бурцев, заведующий лабораторией нейронных систем и глубокого обучения, МФТИ
— Андрей Устюжанин, руководитель совместных проектов Яндекса и CERN
— Иван Ямщиков, PhD, научный сотрудник Института Макса Планка (Лейпциг, Германия), ИИ-евангелист компании ABBYY, сооснователь Creaited Labs
— Константин Воронцов, доктор физико-математических наук. заведующий лабораторией машинного интеллекта МФТИ
— Константин Кайсин, операционный директор технологических конкурсов Up Great
— Юрий Молодых, директор по развитию технологических конкурсов Up Great
Участие бесплатное. Регистрация по ссылке: https://bit.ly/2Rvstz9
Присоединяйтесь!
#Технологические_конкурсы #Up_Great #НТИ #ИИ #прочтение #machinelearning #nlp
📃 PORORO
PORORO
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
PORORO
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
VK
Data Science / Machine Learning / AI / Big Data
PORORO
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
Platform Of neuRal mOdels for natuRal language prOcessing : https://github.com/kakaobrain/pororo
#MachineLearning #NaturalLanguageProcessing #NLP
Data Science / Machine Learning / AI / Big Data (VK)
CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review
Hendrycks et al.: https://arxiv.org/abs/2103.06268
#ArtificialIntelligence #NLP #Dataset #Legal
CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review
Hendrycks et al.: https://arxiv.org/abs/2103.06268
#ArtificialIntelligence #NLP #Dataset #Legal
Neurohive (VK)
TextFlint – это мультиязычная, многозадачная платформа для анализа устойчивости NLP-моделей. В открытом доступе для английского и китайского языков, другие языки разрабатываются.
#Development #Arxiv #NLP #Opensource
TextFlint – это мультиязычная, многозадачная платформа для анализа устойчивости NLP-моделей. В открытом доступе для английского и китайского языков, другие языки разрабатываются.
#Development #Arxiv #NLP #Opensource
Data Science / Machine Learning / AI / Big Data (VK)
The NLP Cookbook: Modern Recipes for Transformer based Deep Learning Architectures
Sushant Singh, Ausif Mahmood: https://arxiv.org/abs/2104.10640
#NLP #Transformer #DeepLearning
The NLP Cookbook: Modern Recipes for Transformer based Deep Learning Architectures
Sushant Singh, Ausif Mahmood: https://arxiv.org/abs/2104.10640
#NLP #Transformer #DeepLearning
Forwarded from Machinelearning
WordLlama — это быстрый и легкий набор инструментов для обработки естественного языка для задач нечеткой дедупликации, оценки сходства и ранжирования слов.
Он оптимизирован для CPU и способен создавать эффективные представления текстовых лексем, используя компоненты из больших языковых моделей, например LLama3.
Ключевые особенности WordLlama:
Эксперименты на наборе данных MTEB показывают, что WordLlama превосходит GloVe 300d по всем показателям, несмотря на значительно меньший размер (16 МБ против >2 ГБ).
WordLlama демонстрирует высокую производительность в задачах кластеризации, реранжирования, классификации текстов и семантического поиска.
В будущем разработчики планируют добавить функции для семантического разделения текста, а также примеры блокнотов и конвейеры RAG.
@ai_machinelearning_big_data
#AI #ML #Toolkit #NLP #WordLlama
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Этот открытый учебник считается де-факто стандартом и одним из самых авторитетных и всеобъемлющих ресурсов для изучения областей обработки естественного языка (NLP), вычислительной лингвистики и обработки речи.
Книга разделена на три части, включающие 24 основные главы и 8 приложений.
Темы охватывают широкий спектр, включая:
Для каждой главы доступны слайды в форматах PPTX и PDF, что делает ресурс полезным для преподавателей.
Для всех, кто заинтересован в изучении NLP это фантастически полезный ресурс.
@ai_machinelearning_big_data
#freebook #opensource #nlp
Please open Telegram to view this post
VIEW IN TELEGRAM