♾ О полярных координатах и нахождении площади в полярной системе координат 💡
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
♾ О полярных координатах и нахождении площади в полярной системе координат 💡
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
♾ О полярных координатах и нахождении площади в полярной системе координат 💡
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
♾ О полярных координатах и нахождении площади в полярной системе координат 💡
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
♾ О полярных координатах и нахождении площади в полярной системе координат 💡
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
💡 Репетитор IT mentor // @mentor_it
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
💡 Репетитор IT mentor // @mentor_it
♾️ О полярных координатах и нахождении площади в полярной системе координат 💡
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование
Задача 1. Найти площадь, ограниченную кривыми, заданными в полярной системе координат: r = 1 - cos(φ) ; r = 1; r ⩾ 1
Задача 2. Найти площадь фигуры, ограниченной "трехлепестковой розой" r = a ⋅ cos(3φ).
Задача 3. Если плоская фигура имеет "сложную" форму, то как её разбивать в полярной системе?
Задача 4. Вычислить площадь фигуры, ограниченной линией r = 2 cos²(φ)
Задача 5. Вычислить площадь фигуры, ограниченной линиями r = -2⋅sin(3φ) и r = 2⋅sin(φ) в полярной системе координат.
Задача 6. Вычислить площадь фигуры, ограниченной r = √3⋅cos(φ) и r = sin(φ) в полярной системе координат.
〰️ Разбор и решение всех задач в статье ➰
#математика #разбор_задач #задачи #математически_анализ #интегрирование