🔥 Complete NLP Series
Этот репозиторий содержит все, что вам нужно, чтобы стать экспертом в #NLP с 30 готовыми проектами.
• Github
@machinelearning_ru
Этот репозиторий содержит все, что вам нужно, чтобы стать экспертом в #NLP с 30 готовыми проектами.
• Github
@machinelearning_ru
Forwarded from Machinelearning
GraphRAG использует графы знаний для улучшения ответов на запросы. Во время запроса система обращается к графу знаний и использует резюме сообществ и связи между сущностями для формирования контекста, который помогает LLM дать более точный ответ, чем традиционные методы, основанные на поиске по векторным сходствам.
Архитектура GraphRAG состоит из ключевых компонентов:
Indexer : разделяет корпус данных на мелкие текстовые блоки (TextUnits), извлекает из них сущности, связи и ключевые утверждения.
Clustering : группирует данные в иерархическую структуру с использованием метода Лейдена, создавая граф знаний.
Community Summarization : генерирует обобщенные описания для каждой группы данных, что помогает в понимании контекста и смыслового связывания всей информации.
Knowledge Graph : структура, объединяющая сущности и их связи, созданная на основе данных.
GraphRAG значительно улучшает работу моделей языка с частными данными, позволяя им более точно и полно отвечать на сложные вопросы, требующие синтеза информации из разных источников.
⚠️ Рекомендации и предупреждения:
- Эффективность индексации зависит от правильной идентификации понятий
- Индексация может быть дорогостоящей, рекомендуется создание тестового набора данных
- Система предназначена для опытных пользователей в предметной области
- Необходим анализ ответов человеком для получения достоверной информации
- Методология наиболее эффективна на текстовых данных с общей темой и множеством сущностей
📄 Документация:
🟡Страница проекта
🟡Arxiv
@ai_machinelearning_big_data
#LLM #GraphRAG #ML #RAG #NLP #Deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Вышла новая MiniCPM3-4B 🎉
✨ Превосходит Phi-3.5-mini-instruct и GPT-3.5-Turbo
🔥 На уровек производительности более крупных моделей, таких как Llama3.1-8B-Instruct и Qwen2-7B-Instruct
🔗 GitHub: https://github.com/OpenBMB/MiniCPM
🤗 HuggingFace: https://huggingface.co/openbmb/MiniCPM3-4B
Ключевые особенности:
🛠️ Вызов функций и 💻 Интерпретатор кода.
🧮 Способности к рассуждениям и математике
🌍 Бесшовная многоязыковая поддержка
📜 Возможность работы с длинными контекстами: Встроенная поддержка длины контекста 32k с высокой производительностью, использует подход LLM x MapReduce для теоретической обработки бесконечной длины контекста.
🔗 GitHub: https://github.com/OpenBMB/MiniCPM
🤗 HuggingFace: https://huggingface.co/openbmb/MiniCPM3-4B
#AI #NLP #MiniCPM #LLM
@machinelearning_ru
✨ Превосходит Phi-3.5-mini-instruct и GPT-3.5-Turbo
🔥 На уровек производительности более крупных моделей, таких как Llama3.1-8B-Instruct и Qwen2-7B-Instruct
🔗 GitHub: https://github.com/OpenBMB/MiniCPM
🤗 HuggingFace: https://huggingface.co/openbmb/MiniCPM3-4B
Ключевые особенности:
🛠️ Вызов функций и 💻 Интерпретатор кода.
🧮 Способности к рассуждениям и математике
🌍 Бесшовная многоязыковая поддержка
📜 Возможность работы с длинными контекстами: Встроенная поддержка длины контекста 32k с высокой производительностью, использует подход LLM x MapReduce для теоретической обработки бесконечной длины контекста.
🔗 GitHub: https://github.com/OpenBMB/MiniCPM
🤗 HuggingFace: https://huggingface.co/openbmb/MiniCPM3-4B
#AI #NLP #MiniCPM #LLM
@machinelearning_ru
Forwarded from Machinelearning
🥥 Training Large Language Models to Reason in a Continuous Latent Space
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
<bot> и <eot>.
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
git clone git@github.com:facebookresearch/coconut.git
cd coconut
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Forwarded from Machinelearning
ByteDance представила InfiniteYou — ИИ-систему, которая генерирует фотореалистичные портреты, сохраняя сходство с оригиналом и точно следуя текстовым запросам. В отличие от PuLID-FLUX, в InfiniteYou черты лица обрабатываются отдельным слоем, что повышает качество без риска переобучения.
Технология использует двухэтапное обучение: сначала на реальных фото, затем — на синтетических изображениях. По данным тестов, 72,8% участников выбрали результаты InfiniteYou из-за детализации и отсутствия артефактов вроде «копирования» лиц. Система совместима с ControlNet и LoRA, а для генерации нужно всего 4 шага.
Исходный код и веса модели уже доступны на GitHub и Hugging Face, демо-версия доступна тут.
analyticsindiamag.com
Компания NVIDIA анонсировала экспериментальный релиз Project G-Assist — ИИ-агента, использующего компактную языковую модель, которая обрабатывает голосовые или текстовые запросы, оптимизируя настройки игр, мониторинг производительности и даже управление подсветкой периферии от Logitech или Corsair. Всё работает оффлайн, без подписок и облачных серверов.
Для разработчиков открыт доступ к GitHub-репозиторию: там есть шаблоны для создания плагинов, интеграции со Spotify, Twitch или Google Gemini. Технические требования — RTX 30/40/50 серии, 12 ГБ видеопамяти и свежие драйверы.
nvidia.com
Figure разработала революционный метод обучения человекоподобных роботов — кастомная end-to-end нейросеть на основе RL за несколько часов «прокачала» движения Figure 02 до уровня естественной человеческой походки.
Все благодаря симулятору, где тысячи виртуальных роботов учились ходить по разным поверхностям, падать и реагировать на толчки. Ключевая фишка — перенос навыков из симуляции в реальность без доработок: помогли рандомизация параметров и мгновенная коррекция крутящего момента. Обещают, что уже скоро робот Helix на этой же базе сможет готовить и убираться.
figure.ai
Apple обновила раздел сайта, подтвердив использование снимков из Look Around (аналог Street View) для тренировки ИИ-моделей с марта 2025 года. Данные, собранные камерами на автомобилях и с переносных инсталляций (для пешеходных зон), включая 3D-карты, помогут улучшить распознавание изображений, генерацию контента и поиск в приложении «Фото».
Для защиты приватности Apple блюрит лица и номера машин на фото, а также готова скрыть частные строения по запросу. Обучение моделей будет проводиться только с обработанными изображениями. Подробности о конкретных алгоритмах компания пока не раскрывает, возможно о них станет известно на WWDC 2025, который пройдет с 9 по 13 июня.
9to5mac.com
Tesla присоединится к симпозиуму по робототехнике в Капитолии, чтобы продемонстрировать своего человекоподобного робота Optimus конгрессменам и сотрудникам Белого дома. Мероприятие, организованное A3 Automate и Университетом Карнеги-Меллон. пройдёт в 26 марта в здании Cannon House Office.
В приглашении Tesla подчеркивает, что робот позволит «заглянуть в будущее», и приглашает всех желающих оценить разработку.
axios.com
@ai_machinelearning_big_data
#AI #ML #Research #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM