Forwarded from Machinelearning
SmolVLM - серия компактных VLM с 2 млрд. параметров, отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.
Архитектура SmolVLM основана на Idefics3, с несколькими отличиями:
Модель кодирует каждый патч изображения 384x384 в 81 токен, что позволяет ей обрабатывать тестовые запросы и изображения с использованием всего 1.2 тыс. токенов, в то время как Qwen2-VL использует 16 тыс. токенов. Это преимущество приводит к значительно более высокой скорости предварительной обработки (в 3,3-4,5 раза) и генерации (в 7,5-16 раз) по сравнению с Qwen2-VL.
Для самостоятельной тонкой настройки SmolVLM можно использовать transformers и TRL. Разработчиками представлен блокнот для файнтюна на VQAv2 с использованием LoRA, QLoRA или полной тонкой настройки. SmolVLM интегрирован с TRL для DPO через CLI.
⚠️ При batch sizes=4 и 8-битной загрузке QLoRA файнтюн потребляет около ~16 GB VRAM
@ai_machinelearning_big_data
#AI #ML #SmallVLM #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
TGI v3 — новая версия архитектуры для обработки естественного языка, разработанная Hugging Face. TGI v3 демонстрирует значительный прирост производительности, особенно при работе с длинными запросами.
Улучшения v3:
Flashinfer
и flashdecoding
— новые ядра быстрой обработки текста. Оптимизированная структура кэширования позволяет быстро находить совпадения даже для очень длинных запросов.TGI v3 оценивалась в реалистичных сценариях на коротких и длинные запросах. Результаты тестов показали, что TGI v3 обрабатывает в 3 раза больше токенов, чем vLLM, а скорость обработки увеличилась в 13 раз для запросов длиной 200K+ токенов.
Хотя результаты работы TGI v3 впечатляют, следует учитывать некоторые ограничения:
⚠️ Если в среде не хватает места в kv-кэше, это может привести к конфликту. Чтобы избежать этого эффекта, следует установить ограничение
--max-total-tokens.
⚠️ В сценариях, где несколько реплик находятся за одним эндпоинтом рекомендуется использовать балансировку нагрузки на зависимые сеансы, чтобы заставить каждого пользователя отправлять свои запросы на одну и ту же реплику.
@ai_machinelearning_big_data
#AI #ML #LLM #HuggingFace #TGI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Разработчики с Hugging Face повторил полный цикл разработки DeepSeek - от сбора данных до обучения! 🔥
Цель этого репозитория - объяснить все части конвейера создания R1 таким образом, чтобы каждый мог повторить его или построить поверх него свой проект.
Из чего состоит проект:
- src/open_r1 содержит скрипты для обучения и оценки моделей, а также для генерации синтетических данных:
- grpo.py : обучение модели с помощью GRPO
- sft.py: простой SFT
- evaluate.py: оценка модели на основе тестов R1.
- generate.py: генерация синтетических данных с помощью Distilabel.
- Makefile содержит простую в выполнении команду для каждого шага конвейера R1.
▪ Github
@ai_machinelearning_big_data
#opensource #DeepSeekR1 #huggingface #OpenR1
Please open Telegram to view this post
VIEW IN TELEGRAM
🔊 Ke-Omni-R-3B
👉 Открытая модель, которая понимает аудио и отвечает на вопросы по аудио.
🏆 Лидирует на бенчмарках аудиорассуждений.
📌 Построена на базе Qwen 3B.
🎥 Omni-R1
👉 Модель для видеоанализа, которая "смотрит" на видео и рассуждает на уровне каждого пикселя.
⚔️ Уже конкурирует с лучшими проприетарными решениями.
📌 Построена на Qwen 7B.
💡 Qwen2.5 - основа для мультимодального ИИ: текст + аудио + видео.
Если ты делаешь проекты в этой сфере — обязательно посмотри, что уже делают на базе Qwen.
#Qwen #AI #Multimodal #HuggingFace #OpenSource #LLM
📎 Модель: https://huggingface.co/KE-Team/Ke-Omni-R-3B
👉 Открытая модель, которая понимает аудио и отвечает на вопросы по аудио.
🏆 Лидирует на бенчмарках аудиорассуждений.
📌 Построена на базе Qwen 3B.
🎥 Omni-R1
👉 Модель для видеоанализа, которая "смотрит" на видео и рассуждает на уровне каждого пикселя.
⚔️ Уже конкурирует с лучшими проприетарными решениями.
📌 Построена на Qwen 7B.
💡 Qwen2.5 - основа для мультимодального ИИ: текст + аудио + видео.
Если ты делаешь проекты в этой сфере — обязательно посмотри, что уже делают на базе Qwen.
#Qwen #AI #Multimodal #HuggingFace #OpenSource #LLM
📎 Модель: https://huggingface.co/KE-Team/Ke-Omni-R-3B