Машинное обучение RU
17.1K subscribers
1.29K photos
160 videos
11 files
1.78K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
Forwarded from Machinelearning
🌟 SmolVLM: набор компактных VLM от HuggingFace - Base, Synthetic и Instruct.

SmolVLM - серия компактных VLM с 2 млрд. параметров, отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.

Архитектура SmolVLM основана на Idefics3, с несколькими отличиями:

🟢В качестве языковой основы используется SmolLM2 1.7B вместо Llama 3.1 8B;

🟢Визуальная информация сжимается в 9 раз с помощью стратегии pixel shuffle, по сравнению с 4-кратным сжатием в Idefics3;

🟢Используются патчи размером 384x384 пикселей, а не 364x364;

🟢Визуальная основа модели изменена на shape-optimized SigLIP с патчами 384x384 пикселей и внутренними патчами 14x14;

🟢Контекстное окно SmolLM2 было расширено до 16 тыс. токенов для поддержки работы с несколькими изображениями.

Модель кодирует каждый патч изображения 384x384 в 81 токен, что позволяет ей обрабатывать тестовые запросы и изображения с использованием всего 1.2 тыс. токенов, в то время как Qwen2-VL использует 16 тыс. токенов. Это преимущество приводит к значительно более высокой скорости предварительной обработки (в 3,3-4,5 раза) и генерации (в 7,5-16 раз) по сравнению с Qwen2-VL.

Для самостоятельной тонкой настройки SmolVLM можно использовать transformers и TRL. Разработчиками представлен блокнот для файнтюна на VQAv2 с использованием LoRA, QLoRA или полной тонкой настройки. SmolVLM интегрирован с TRL для DPO через CLI.

⚠️ При batch sizes=4 и 8-битной загрузке QLoRA файнтюн потребляет около ~16 GB VRAM


📌Лицензирование:  Apache 2.0


🟡Статья на HF
🟡Набор моделей
🟡Demo


@ai_machinelearning_big_data

#AI #ML #SmallVLM #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 TGI v3: Новая архитектура ускоренного инференса LLMs.

TGI v3 — новая версия архитектуры для обработки естественного языка, разработанная Hugging Face. TGI v3 демонстрирует значительный прирост производительности, особенно при работе с длинными запросами.

Улучшения v3:

🟢оптимизированные ядра;
🟢эффективная структура кэширования префиксов;
🟢улучшенное управление вычислительными ресурсами.

Flashinfer и flashdecoding — новые ядра быстрой обработки текста. Оптимизированная структура кэширования позволяет быстро находить совпадения даже для очень длинных запросов.

TGI v3 оценивалась в реалистичных сценариях на коротких и длинные запросах. Результаты тестов показали, что TGI v3 обрабатывает в 3 раза больше токенов, чем vLLM, а скорость обработки увеличилась в 13 раз для запросов длиной 200K+ токенов.

Хотя результаты работы TGI v3 впечатляют, следует учитывать некоторые ограничения:

⚠️ Если в среде не хватает места в kv-кэше, это может привести к конфликту. Чтобы избежать этого эффекта, следует установить ограничение --max-total-tokens.

⚠️ В сценариях, где несколько реплик находятся за одним эндпоинтом рекомендуется использовать балансировку нагрузки на зависимые сеансы, чтобы заставить каждого пользователя отправлять свои запросы на одну и ту же реплику.

🔜 Полная статья с описанием TGI v3 доступна на HF.


🖥 GIthub


@ai_machinelearning_big_data

#AI #ML #LLM #HuggingFace #TGI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🖤 Open R1

Разработчики с Hugging Face повторил полный цикл разработки DeepSeek - от сбора данных до обучения! 🔥

Цель этого репозитория - объяснить все части конвейера создания R1 таким образом, чтобы каждый мог повторить его или построить поверх него свой проект.

Из чего состоит проект:
- src/open_r1 содержит скрипты для обучения и оценки моделей, а также для генерации синтетических данных:
- grpo.py : обучение модели с помощью GRPO
- sft.py: простой SFT
- evaluate.py: оценка модели на основе тестов R1.
- generate.py: генерация синтетических данных с помощью Distilabel.
- Makefile содержит простую в выполнении команду для каждого шага конвейера R1.

Github

@ai_machinelearning_big_data


#opensource #DeepSeekR1 #huggingface #OpenR1
Please open Telegram to view this post
VIEW IN TELEGRAM
🔊 Ke-Omni-R-3B
👉 Открытая модель, которая понимает аудио и отвечает на вопросы по аудио.
🏆 Лидирует на бенчмарках аудиорассуждений.
📌 Построена на базе Qwen 3B.

🎥 Omni-R1
👉 Модель для видеоанализа, которая "смотрит" на видео и рассуждает на уровне каждого пикселя.
⚔️ Уже конкурирует с лучшими проприетарными решениями.
📌 Построена на Qwen 7B.

💡 Qwen2.5 - основа для мультимодального ИИ: текст + аудио + видео.
Если ты делаешь проекты в этой сфере — обязательно посмотри, что уже делают на базе Qwen.

#Qwen #AI #Multimodal #HuggingFace #OpenSource #LLM

📎 Модель: https://huggingface.co/KE-Team/Ke-Omni-R-3B