Машинное обучение RU
17.1K subscribers
1.29K photos
160 videos
11 files
1.78K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
Forwarded from Machinelearning
🌟 ASR и диаризация речи от RevAI.

RevAI, лидер в области профессиональной транскрипции английской речи выпустила в открытый доступ фреймdорк Reverb и набор моделей для построения конвейера speech-to-text.

Reverb включает в себя: модель ASR на базе WeNet и 2 версии модели диаризации речи. Весь паплайн Reverb можно запускать как на CPU, так и на GPU.

Reverb ASR обучалась на 200 000 часов английской речи, профессионально транскрибированной людьми — это самый большой корпус транскрибированной человеком речи, когда-либо использовавшийся для обучения модели с открытым исходным кодом.

Она позволяет контролировать уровень дословности выходного транскрипта для создания чистого, удобочитаемого текста и справляется с обработкой аудио, требующего транскрипции каждого произнесенного слова, включая запинания и перефразирования.

Reverb ASR использует совместную архитектуру CTC/attention и поддерживает несколько режимов декодирования. Указать один или несколько режимов можно в recognize_wav.py. Для каждого режима будут созданы отдельные выходные каталоги. Варианты декодирования:

🟢attention;
🟢ctc_greedy_search;
🟢ctc_prefix_beam_search;
🟢attention_rescoring;
🟢joint_decoding.

В оценке Reverb ASR использовались три корпуса длинных аудиозаписей: Rev16 (подкасты), Earnings21 и Earnings22 (телефонные разговоры).

Reverb ASR значительно превосходит конкурентов в тестовых наборах ASR для длинных форм, особенно в Earnings22, где в основном речь носителей английского языка не как родного.

Для традиционного бенчмаркинга использовался GigaSpeech, Reverb ASR запускался в дословном режиме на скриптах оценки Hugging Face Open ASR Leaderboard. По их результатам Reverb ASR значительно превосходит конкурентов в тестовых наборах ASR для длинных форм.

Reverb diarization v1 использует архитектуру pyannote 3.0 и имеет 2 слоя LSTM со скрытым размером 256, всего около 2,2 млн параметров, а Reverb diarization v2 использует WavLM вместо функций SincNet в базовой модели pyannote 3.0.

Обе модели диаризации прошли донастройку на 26 000 часах данных с экспертной разметкой.

▶️Локальное использование предусматривает несколько вариантов: установка с anaconda, использование Docker-образа и масштабное развертывание.

⚠️ Для локальной установки понадобится Huggingface API KEY


🟡Набор моделей
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ASR #Diarization #REVAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📦 Kubernetes for ML Engineers — практическое руководство по продакшну ML-моделей

[Paulescu/kubernetes-for-ml-engineers](https://github.com/Paulescu/kubernetes-for-ml-engineers) — это открытое и очень доступное пошаговое руководство по использованию Kubernetes для машинного обучения. Проект помогает ML-инженерам перенести свои модели из Jupyter-блокнота в стабильное, масштабируемое продакшн-окружение.

🚀 Что внутри:
• Как собрать Docker-образ с моделью
• Как задеплоить его в кластер
• Примеры с REST API для инференса
• Конфигурация Pod'ов, Service'ов, Ingress
• Хостинг моделей с autoscaling
• Набор манифестов YAML — можно адаптировать под себя

🧠 Особенно полезно:
• ML-инженерам без опыта DevOps
• Для обучения Kubernetes через реальные ML-задачи
• Для продакшн-деплоя моделей с минимальными усилиями

📂 Всё по делу: чисто, практично и без лишней теории. Просто бери и запускай.

🔗 GitHub: github.com/Paulescu/kubernetes-for-ml-engineers

#kubernetes #mlops #machinelearning #devops #docker #opensource