Машинное обучение RU
17.7K subscribers
1.57K photos
207 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
Forwarded from Machinelearning
🔥 Text‑to‑FILM становится реальностью!

SkyReels‑V2 - опенсорс генератор видео из текста, который не только соперничает с лучшими закрытыми решениями, но и предлагает уникальное преимущество — теоретически неограниченную длину генераций.

✔️ Что умеет SkyReels V2:

- Story Generation: полный конвейер от генерации текста до последовательного сюжета для видео.
- Image‑to‑Video
- Camera Director: управление виртуальной камерой — смена углов, зум, трекинг.
- Elements‑to‑Video: генерация отдельных объектов или эффектов, которые затем интегрируются в общий видеоряд.

🌟 Режимы инференса: поддерживаются как синхронный (full‑sequence diffusion), так и асинхронный (Diffusion Forcing) режимы для гибкой работы на разных GPU-конфигурациях

На бенчмарках SkyReels V2 лидирует среди открытых моделей на VBench с 83.9%, оставляя позади Wan2.1, HunyuanVideo и OpenSora 2.0.


Попробовать
Github
Technical Report
Hugging Face
ModelScope


#AI #TextToFilm #VideoGeneration #SkyReelsV2 #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥43
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Alibaba представили новую модель - Wan2.1-VACE: универсальную модель для создания и редактирования видео.

Что умеет Wan2.1-VACE:
🟢 R2V — генерация видео по ссылке-примере (Reference-to-Video)
🟢 V2V — редактирование видео по видео (Video-to-Video)
🟢 MV2V — редактирование замаскированных областей видео (Masked Video-to-Video)

💡 Эти возможности можно свободно комбинировать, выполняя сложные креативные задачи.

🔍 Ключевые особенности:
SOTA-производительность: Wan2.1 стабильно превосходит существующие open-source модели и даже коммерческие решения уровня state-of-the-art в ряде бенчмарков.

Работает на обычных видеокартах: Модель T2V-1.3B требует всего 8.19 ГБ видеопамяти, что делает её совместимой почти со всеми пользовательскими GPU. Например, на RTX 4090 она генерирует 5-секундное видео 480P примерно за 4 минуты (без оптимизаций, таких как квантизация). Её производительность сопоставима с некоторыми закрытыми моделями.

Мультизадачность: Wan2.1 демонстрирует хорошие результаты в задачах текст-в-видео, изображение-в-видео, видеомонтаж, текст-в-изображение и видео-в-аудио, продвигая границы генерации видео..

Модель способна выдавать 1080P в теории любой длины, при этом сохраняя временную структуру.

- Размер модели: 1.3B и 14B
- Лицензия: Apache-2.

🔜 GitHub: github.com/Wan-Video/Wan2.1
🔜 HuggingFace: huggingface.co/Wan-AI
🔜 ModelScope: modelscope.cn/organization/Wan-Al
🔜 API сервис: bailian.console.alibabacloud.com

@ai_machinelearning_big_data


#Alibaba #wan #videogeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32
Forwarded from Machinelearning
💡 Исследователи из ByteDance и Stanford предложили новый метод для генерации длинных видео — Mixture of Contexts.

🔑 В чём проблема:
Когда видео становится длинным, внимание модели сильно «раздувается»: растёт стоимость вычислений, модель теряет детали на генерациях, забывает персонажей и «дрейфует».

Чем интересен Mixture of Contexts:
- Видео разбивается на куски (кадры, шоты, подписи).
- Каждый запрос выбирает только нужные чанки, вместо того чтобы учитывать всю историю.
- Для этого используется простая оценка релевантности: сравнение признаков чанков с текущим запросом.
- Обязательно учитываются два «якоря»: полный текстовый промпт и локальный шот для деталей видео.
- Causal mask блокирует внимание к будущим кадрам, чтобы не было зацикливаний.
- Дальше применяется Flash Attention только к выбранным чанкам — вычисления растут не с длиной всего видео, а только с полезным контекстом.

📊 Результаты:
- В 7 раз меньше FLOPs
- В 2.2 раза быстрее работа
- На длинных сценах (180k токенов) отсекается 85% ненужного внимания

🎥 Итог:
- Короткие клипы сохраняют качество
- Длинные сцены становятся более плавными, а персонажи — стабильными
- Время генерации заметно сокращается

Главное: модель учится сама понимать, на что смотреть, получая «память» на минуты видео без изменения базовой архитектуры.

🟠 Подробнее

@ai_machinelearning_big_data

#AI #ML #ByteDance #Stanford #videogeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🎥 Новинка от ByteDance: модель Video-As-Prompt Wan2.1-14B

ByteDance выпустила модель Wan2.1-14B, специализирующуюся на задаче *video-as-prompt*, то есть использование видео или комбинации изображений и текста как входных данных для генерации нового видео.

- Работает в режимах «видео → видео» или «изображения/текст → видео».
- 14 млрд параметров — высокая детализация, плавная динамика, реалистичные движения.
- Использует исходное видео как шаблон стиля и композиции.

⚠️ Что стоит учитывать
- Модель требует мощных GPU и большого объёма памяти.
- Качество результата зависит от сложности запроса и длины видео.

🟠Github: https://github.com/bytedance/Video-As-Prompt
🟠HF: https://huggingface.co/ByteDance/Video-As-Prompt-Wan2.1-14B

@ai_machinelearning_big_data


#AI #VideoGeneration #ByteDance #Wan2 #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1