Машинное обучение RU
17.7K subscribers
1.57K photos
207 videos
11 files
2.04K links
Все о машинном обучении

админ - @workakkk

@data_analysis_ml - анализ даннных

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram -лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python 📚

@datascienceiot - 📚

РКН: clck.ru/3FmrUw
Download Telegram
🚀 Unsloth показал, как динамическая квантизация (Dynamic GGUFs) может радикально ускорить и облегчить работу LLM, не теряя качество.

В чём суть
Обычные методы квантизации уменьшают разрядность весов модели одинаково для всех слоёв.
Unsloth пошёл дальше: каждому слою подбирается своё число бит.
- Ключевые слои → 6–8 бит (чтобы сохранить точность).
- Второстепенные → 1–3 бита (для максимального сжатия).

Результаты, которых удалось добиться:
- 671B DeepSeek-V3.1: сжатие модели с 671GB до 192GB (–75%).
- 1-бит версия уже обгоняет GPT-4.1 и GPT-4.5 в «no-thinking» задачах.
- 3-бит версия превосходит Claude-4-Opus в «thinking» задачах.
- 5-бит версия догоняет и стабильно держит уровень SOTA.

🟢Почему это интересно:
- Сжатие → модели становятся доступнее для запуска на меньших GPU.
- Качество не падает, а иногда даже растёт за счёт умного распределения битности.
- Тесты на Aider Polyglot benchmark показывают лучшие результаты среди существующих quant-моделей.

🟢Итог
Dynamic GGUF от Unsloth — это не просто ещё один способ «урезать» модель, а технология, которая делает триллионные LLM компактными, быстрыми и при этом сверхточными.

Пост: https://docs.unsloth.ai/basics/unsloth-dynamic-ggufs-on-aider-polyglot

#Unsloth #LLM #Quantization #AI #AiderPolyglot
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍4🔥3