Machine learning Interview
24.4K subscribers
1.02K photos
67 videos
12 files
689 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
🔥 Дайджест полезных материалов из мира Машинного обучения за неделю

Почитать:
Bounding boxes для обнаружения объектов — что это, простым языком
Разработка алгоритмов обработки данных в реальном времени на Python
Лучшие практики Golang (20 лучших)
Нейронные сети для новичков и профи: топ бесплатных курсов по ИИ
5 уровней зрелости MLOps
Персонализация тарифного плана для новых абонентов: как оцифровать привлекательность
Создание видео zoom in и zoom out с помощью inpainting в Kandinsky
Парк юрского периода глазами нейросети: как развернуть Diffusers для генерации изображений за 10 минут
Ближайшее будущее AI в рентгенологии. Мои комментарии к статье в RSNA
Использование Insightface для быстрого поиска и сравнения лиц на изображениях
OpenAI DevDay – ещё 5 видео про то, как работает компания, и как AI применять разработчикам
How to install NVIDIA drivers for machine learning on Ubuntu
Working through the fast.ai book in Rust - Part 1
Why ChatGPT and other LLMs are overrated and won't take your job
Demystifying Transformer Models: Unveiling the Magic of Natural Language Processing
A Quick Look At Natural Language Generation (NLG)
AI Log #2: What is a Cost Function in Machine Learning?
The Next Generation of AI Developer Tools
AI Development Guide 2024
What is a Conditional Generative Adversarial Network?
The State of Serverless GPU Part -2

Посмотреть:
🌐 Lightning Interview “Large Language Models: Past, Present and Future” ( 01:00:00)
🌐 Leveraging Generative AI in Education - A M Aditya ( 31:24)
Посмотреть:
🌐 Пишем генератор Shorts видео на Python для заработка на YouTube. ( 11:50)
🌐 Озвучка и генерации контента с помощью #Python и AI ( 00:44)
🌐 Замена лица на любой фотографии с помощью #python БЕСПЛАТНО! ( 00:59)
🌐 Lightning Interview “Large Language Models: Past, Present and Future” ( 01:00:00)
🌐 Thomas Scialom, PhD - Large Language Models: Past, Present and Future ( 34:45)
🌐 Leveraging Generative AI in Education - A M Aditya ( 31:24)
🌐 AI Art: How is This Quality Even Possible? ( 05:29)

Хорошего дня!

#digest #machinelearning

@machinelearning_interview
⚡️ Complete-Applied-Machine-Learning-with-Projects-Series

В этом репозитории собрано все, что нужно для того, чтобы стать экспертом в прикладном #MachineLearning 53+ готовых проектов с кодом.

https://github.com/Coder-World04/Complete-Applied-Machine-Learning-with-Projects-Series

@machinelearning_interview
⚡️ Бесплатный курс по фундаментальным моделям от Университета Ватерлоо

Курс охватывает обширный круг тем, связанных с глубоким обучением и его практическими приложениями.

Отличный курс для подготовки к собесу.

Вот краткий обзор тем:

🔘 Рекуррентные и свёрточные нейронные сети (RNN и CNN). 🔘 Обработка естественного языка (NLP) и компьютерное зрение (CV).
🔘 Механизмы внимания и трансформеры.
🔘 Предобучение языковых моделей.
🔘 Обучение с подкреплением через обратную связь (RLHF). 🔘 Создание мультимодальных моделей.
🔘 Диффузионные модели и генерация изображений.

📌 Курс

@machinelearning_interview

#datascience #python #machinelearning
🖥 Большой плейлист Deep Learning лекций от MIT!

🌟 72 видео

🔗 Ссылка: *клик*

#курс #deeplearning #machinelearning #bigdata #ai

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Бесплатный курс от Simplilearn, который знакомит пользователей с основами алгоритмов машинного обучения!

🌟 Этот курс охватывает различные методы машинного обучения, такие как регрессия, классификация, кластеризация и др., и предназначен для самостоятельного изучения. Курс включает лекции, видео и практические задания, что позволяет участникам изучить основные концепции и алгоритмы, применяемые в машинном обучении

🔗 Ссылка: *клик*

#курс #machinelearning

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
📖 Полезный репозиторий с курсами от компании Anthropic!

💡 Это — полезные материалы, которые обучают основам работы с языковой моделью Claude и включают курсы по основам API, интерактивному обучению инженерии промптов, применению промптов в реальных сценариях, их оценке и интеграции инструментов

🖥 Github

#курс #machinelearning #claude

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
📖 Огромный и крайне полезный бесплатный учебник: Обзор больших языковых моделей!

🔗 Ссылка: *клик*

#учебник #machinelearning

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔍 Подготовка к собеседованию по Deep Learning!

🌟 Этот комплексный курс содержит 50 наиболее распространенных вопросов с подробными объяснениями для каждого!

🔗 Ссылка: *клик*

#deeplearning #machinelearning

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 nn-zero-to-hero — учебный проект, который охватывает создание нейронных сетей с нуля!

🌟 В репозитории содержатся подробные шаги для создания простой нейронной сети, начиная с базовых понятий и заканчивая более сложными архитектурами, включая различные типы слоев, оптимизаторы и методы обучения.

🔐 Лицензия: MIT

🖥 Github

#курс #machinelearning

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM