Xorbits позволяет, к примеру, легко использовать данные для обучения генеративных моделей а также разворачивать обученные модели в своей инфраструктуре.
Xorbits может использовать несколько ядер/GPU, может работать на 1 машине или масштабироваться до тысяч машин для поддержки обработки терабайтов данных.
Xorbits предоставляет набор полезных библиотек для анализа данных и ML.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
На Хабр вышла статья-разбор новой технологии Яндекс Погоды, работающей на основе нейросетей. OmniCast улучшает локальный прогноз за счет новых источников данных — любительских метеостанций. Благодаря этому сервис стал в 36 раз чаще получать данные о температуре и обновлять прогноз каждые пять минут.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Как выбрать Фреймворк для инференса.
Полезный чек-лист вопросов для выбора мл фреймворка для настройки моделей.
📌 Github
@machinelearning_interview
Полезный чек-лист вопросов для выбора мл фреймворка для настройки моделей.
📌 Github
@machinelearning_interview
Помимо подробной теории по ML здесь приводятся лабораторные работы с решениями
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ LinkedIn_AIHawk — это утилита на основе ИИ, созданная пользователем Reddit, для быстрого поиска работы.
Программа адаптирует ваше резюме под описания вакансий и автоматически рассылает их.
Результаты впечатляют: за сутки автор отправил 1000 резюме, что привело к 50 приглашениям на собеседования. Бот не только корректирует резюме, но и самостоятельно отвечает на вопросы HR-менеджеров от вашего имени.
Установка:
▪ Github
@machinelearning_interview
Программа адаптирует ваше резюме под описания вакансий и автоматически рассылает их.
Результаты впечатляют: за сутки автор отправил 1000 резюме, что привело к 50 приглашениям на собеседования. Бот не только корректирует резюме, но и самостоятельно отвечает на вопросы HR-менеджеров от вашего имени.
Установка:
bash
$ git clone https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application
$ cd LinkedIn_AIHawk_automatic_job_application
$ pip install -r requirements.txt
▪ Github
@machinelearning_interview
📶 Главные темы линейной алгебры для специалиста по машинному обучению
📌 Крутейшие Стэнфордские материалы по линейной алгебре
@machinelearning_interview
📌 Крутейшие Стэнфордские материалы по линейной алгебре
@machinelearning_interview
Доклады экспертов, заслуживающие отдельного внимания:
— Виктор Плошихин, руководитель ML-лаборатории в Yandex Platform Engineering — «AI-инструмент для разработчика: как мы обучали LLM работе с кодом».
— Ирина Барская, руководитель службы аналитики и исследований – «Человек и LLM. Как оценивать качество моделей и строить их метрики качества».
— Екатерина Глазкова, тимлид команды алайнмента VLM службы компьютерного зрения — «Адаптация VLM под продуктовые требования — как сервис Нейро делали мультимодальным».
— Савва Степурин, старший разработчик команды рекомендаций — «Как улучшить знакомые подходы для рекомендации незнакомого — как умная система рекомендаций помогает пользователям Яндекс Музыки открывать новые треки и артистов».
— Степан Комков, старший разработчик службы синтеза речи — «Синтез выразительной речи для аудиокниг, прошлое, настоящее и будущее — как GPT и диффузионные модели произвели революции в синтезе речи и как мы это используем».
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🐈⬛ A Comprehensive Benchmark of Machine and Deep Learning
Across Diverse Tabular Datasets
В новом обзоре алгоритмов машинного обучения были проанализированы 20 моделей на 111 датасетах, охватывающих задачи классификации и регрессии.
CatBoost, относящийся к группе моделей Tree-based Ensemble (TE), занял первое место, продемонстрировав лучшие результаты на 19 из 111 наборов данных. В то же время XGBoost оказался на 10-й позиции.
🔗 Подробности
Across Diverse Tabular Datasets
В новом обзоре алгоритмов машинного обучения были проанализированы 20 моделей на 111 датасетах, охватывающих задачи классификации и регрессии.
CatBoost, относящийся к группе моделей Tree-based Ensemble (TE), занял первое место, продемонстрировав лучшие результаты на 19 из 111 наборов данных. В то же время XGBoost оказался на 10-й позиции.
🔗 Подробности
Forwarded from Machinelearning
Command-r (35B) и Command-r-plus(104B) редакции 08-2024 - это мультиязычные (23 языка, включая русский) модели с контекстным окном 128К и навыками в генерации текста, переписывании и объяснении программного кода и, особенно, для использования в RAG-конфигурациях.
Разработчиками было уделено отдельное внимание обучению генерации ответов по фрагментам документов с цитированием источника, точному обобщению документов и возможности применения в качестве последнего узла RAG-системы.
Command-r-08-2024 : повышена производительность при многоязычной генерации с расширенным поиском (RAG), лучше справляется с математикой, кодом и рассуждениями.
Она конкурирует по показателям с предыдущей версией Command R+ и показывает на 50 % большую пропускную способность и на 20 % меньшую задержку по сравнению с предыдущей версией Command-r
Сommand-r-plus-08-2024 обеспечивает примерно на 50 % большую пропускную способность и на 25 % меньшую задержку по сравнению с предыдущей версией Command-p-plus на идентичной аппаратной платформе.
Обе модели доступны для скачивания на Huggingface, онлайн через API в Cohere’s hosted API и в Amazon Sagemaker.
@ai_machinelearning_big_data
#AI #CommandR #Cohere #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Бесплатный курс по фундаментальным моделям от Университета Ватерлоо
Курс охватывает обширный круг тем, связанных с глубоким обучением и его практическими приложениями.
Отличный курс для подготовки к собесу.
Вот краткий обзор тем:
🔘 Рекуррентные и свёрточные нейронные сети (RNN и CNN). 🔘 Обработка естественного языка (NLP) и компьютерное зрение (CV).
🔘 Механизмы внимания и трансформеры.
🔘 Предобучение языковых моделей.
🔘 Обучение с подкреплением через обратную связь (RLHF). 🔘 Создание мультимодальных моделей.
🔘 Диффузионные модели и генерация изображений.
📌 Курс
@machinelearning_interview
#datascience #python #machinelearning
Курс охватывает обширный круг тем, связанных с глубоким обучением и его практическими приложениями.
Отличный курс для подготовки к собесу.
Вот краткий обзор тем:
🔘 Рекуррентные и свёрточные нейронные сети (RNN и CNN). 🔘 Обработка естественного языка (NLP) и компьютерное зрение (CV).
🔘 Механизмы внимания и трансформеры.
🔘 Предобучение языковых моделей.
🔘 Обучение с подкреплением через обратную связь (RLHF). 🔘 Создание мультимодальных моделей.
🔘 Диффузионные модели и генерация изображений.
📌 Курс
@machinelearning_interview
#datascience #python #machinelearning
Интересный разбор от ML-специалистов Яндекса метода регуляризации в рекомендательных системах. Изначально метод Cluster Anchor Regularization предложили ресерчеры из DeepMind. В посте подробно рассказывается про иерархическую кластеризацию и якорную регуляризацию.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Если API перестает работать или становится платным, он теряет рейтинг и удаляется с сайта. Это полезный ресурс для студентов и разработчиков, которые ищут доступные и рабочие API.
https://www.freepublicapis.com/
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM