Forwarded from Machinelearning
⚡️ OpenAI релизнули новую модель OpenAI o1, которая в разы мощнее GPT-4o.
Тот самый секретны проект, над которым так долго работала компания.
Доступ обещают дать уже сегодня.
@ai_machinelearning_big_data
#openai #chatgpt
Тот самый секретны проект, над которым так долго работала компания.
Доступ обещают дать уже сегодня.
@ai_machinelearning_big_data
#openai #chatgpt
❤22👍2🔥2
Forwarded from Machinelearning
Swarm - это экспериментальный фреймворк, разработанный командой OpenAI Solutions, для создания, оркестрации и развертывания многоагентных систем. Фреймворк фокусируется на упрощении координации, запуска, контроля и тестирования агентов.
Основная цель Swarm - продемонстрировать паттерны, описанные в Orchestrating Agents: Handoffs & Routines cookbook.
Фреймворк построен на двух основных абстракциях: агентах (
Agent
) и передачах управления (handoffs
):Агент - это набор инструкций и функций, который может передавать выполнение другим агентам. Его можно использовать для описания конкретного рабочего процесса или шага (например, последовательность шагов, сложный поиск, одноэтапное преобразование данных и так далее).
Передача управления — это процесс, при котором агент может передать запрос другому агенту, возвращая его в функцию. В процессе передачи управления также происходит обновление переменных контекста, что позволяет вернуть более полный объект
Result
.⚠️ Swarm не использует API Assistants и полностью работает на API Chat Completions.
⚠️ Swarm не предназначен для промышленного использования и не имеет официальной поддержки.
# Install from PIP
pip install git+https://github.com/openai/swarm.git
# Usage
from swarm import Swarm, Agent
client = Swarm()
def transfer_to_agent_b():
return agent_b
agent_a = Agent(
name="Agent A",
instructions="You are a helpful agent.",
functions=[transfer_to_agent_b],
)
agent_b = Agent(
name="Agent B",
instructions="Only speak in Haikus.",
)
response = client.run(
agent=agent_a,
messages=[{"role": "user", "content": "I want to talk to agent B."}],
)
print(response.messages[-1]["content"])
@ai_machinelearning_big_data
#AI #ML #Agents #OpenAI #Swarm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤3
🤖 Цукерберг идёт ва-банк: ставка на суперИИ и $14.3 млрд за контроль над Scale AI
Миллиардер официально заявил о своих амбициях в гонке за суперинтеллектом:
💰 Компания вложила $14.3 млрд в Scale AI и забрала себе не только долю, но и её основателя Александра Ванга — теперь он возглавляет новое стратегическое направление Meta по созданию суперИИ.
👥 Параллельно Цукерберг собирает “звёздную команду” из 50+ топ-исследователей, переманивая людей из OpenAI, DeepMind и других AI-групп с предложениями до $100 млн в опционах. В индустрии это уже называют "Zuck Bucks".
📌 Зачем это всё:
• Llama 4 оказался слабее ожиданий
• Meta хочет не просто догнать конкурентов, а построить AGI на своих условиях
• Scale даёт доступ к инфраструктуре и огромным объёмам размеченных данных
⚠️ Но есть и проблемы:
• Google и OpenAI уже свернули сотрудничество со Scale после сделки
• Внутри компании есть разногласия — Ян Лекун скептически относится к LLM‑подходу к AGI
• На рынке задаются вопросом: зачем строить “суперинтеллект”, если нет killer-продукта?
📉 Это может быть самым амбициозным (или самым дорогим) экспериментом компании со времён метавселенной.
@machinelearning_interview
#AGI #superintelligence #Zuckerberg #ScaleAI #AI #OpenAI #DeepMind #Llama4
Миллиардер официально заявил о своих амбициях в гонке за суперинтеллектом:
💰 Компания вложила $14.3 млрд в Scale AI и забрала себе не только долю, но и её основателя Александра Ванга — теперь он возглавляет новое стратегическое направление Meta по созданию суперИИ.
👥 Параллельно Цукерберг собирает “звёздную команду” из 50+ топ-исследователей, переманивая людей из OpenAI, DeepMind и других AI-групп с предложениями до $100 млн в опционах. В индустрии это уже называют "Zuck Bucks".
📌 Зачем это всё:
• Llama 4 оказался слабее ожиданий
• Meta хочет не просто догнать конкурентов, а построить AGI на своих условиях
• Scale даёт доступ к инфраструктуре и огромным объёмам размеченных данных
⚠️ Но есть и проблемы:
• Google и OpenAI уже свернули сотрудничество со Scale после сделки
• Внутри компании есть разногласия — Ян Лекун скептически относится к LLM‑подходу к AGI
• На рынке задаются вопросом: зачем строить “суперинтеллект”, если нет killer-продукта?
📉 Это может быть самым амбициозным (или самым дорогим) экспериментом компании со времён метавселенной.
@machinelearning_interview
#AGI #superintelligence #Zuckerberg #ScaleAI #AI #OpenAI #DeepMind #Llama4
🔥10❤5👍2🤔2
Forwarded from Machinelearning
GPT-OSS — опенсорс модели для продвинутого reasoning и агентных задач.
— GPT-OSS-120B — 117B параметров, запускается на одной H100 (80GB)
— GPT-OSS-20B — 21B параметров, работает на 16GB GPU (или даже локально!)
💡 Оба варианта — MoE-модели (Mixture of Experts) с 4-битной квантизацией (MXFP4
• Архитектура Token-choice MoE с SwiGLU
• Контекст до 128K токенов с RoPE
• Модель заточена на CoT (chain-of-thought)
• Поддержка instruction-following и tool-use
• Совместима с transformers, vLLM, llama.cpp, ollama
• Используется тот же токенизатор, что и в GPT-4o
Младшая модель может запускаться даже на локальном железе — идеально для on-device и edge-девайсов
🧠 GPT‑OSS‑120B — запускается на одной 80GB GPU
⚡ GPT‑OSS‑20B — запускается на 16GB GPU
https://github.com/huggingface/transformers/releases/tag/v4.55.0
@ai_machinelearning_big_data
#openai #opensource #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
👍28❤9🔥5👨💻2
Media is too big
VIEW IN TELEGRAM
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле.
Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты: 03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью).
В другом тесте, где нужно было сосчитать количество букв D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7.
При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.
Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.
OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
❤16👍11🔥5