Mugesh S. - Hands-on ML Projects with OpenCV - 2023.pdf
    7 MB
  ๐5๐2โค1๐ฅ1
  ๐จโ๐ป Python course from Harvard University!
โ A large playlist with a cool explanation of the language, perhaps one of the best courses on Python!
๐ Link: https://www.youtube.com/playlist?list=PLhQjrBD2T3817j24-GogXmWqO5Q5vYy0V
#python
โ A large playlist with a cool explanation of the language, perhaps one of the best courses on Python!
๐ Link: https://www.youtube.com/playlist?list=PLhQjrBD2T3817j24-GogXmWqO5Q5vYy0V
#python
๐12๐2
  TensorFlow v2.0 Cheat Sheet
#TensorFlow is an open-source software library for highperformance numerical computation. Its flexible architecture enables to easily deploy computation across a variety of platforms (CPUs, GPUs, and TPUs), as well as mobile and edge devices, desktops, and clusters of servers. TensorFlow comes with strong support for machine learning and deep learning.
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
๐4โค1
  Media is too big
    VIEW IN TELEGRAM
  ๐ฅ MIT has updated its famous course 6.S191: Introduction to Deep Learning.
All slides, #code and additional materials can be found at the link provided.
๐ Fresh lecture : https://youtu.be/alfdI7S6wCY?si=6682DD2LlFwmghew
The program covers topics of #NLP, #CV, #LLM and the use of technology in medicine, offering a full cycle of training - from theory to practical classes using current versions of libraries..
The course is designed even for beginners: if you know how to take derivatives and multiply matrices, everything else will be explained in the process.
The lectures are released for free on YouTube and the #MIT platform on Mondays, with the first one already available
All slides, #code and additional materials can be found at the link provided.
๐ Fresh lecture : https://youtu.be/alfdI7S6wCY?si=6682DD2LlFwmghew
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence
โค4
  Stanfordโs Machine Learning - by Andrew Ng
A complete lecture notes of 227 pages. Available Free.
Download the notes:
cs229.stanford.edu/main_notes.pdf
A complete lecture notes of 227 pages. Available Free.
Download the notes:
cs229.stanford.edu/main_notes.pdf
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras โ
๐5
  Python For Everything!๐
Python, the versatile language, can be combined with various libraries to build amazing things:๐
1. Python + Pandas = Data Manipulation
2. Python + Scikit-Learn = Machine Learning
3. Python + TensorFlow = Deep Learning
4. Python + Matplotlib = Data Visualization
5. Python + Seaborn = Advanced Visualization
6. Python + Flask = Web Development
7. Python + Pygame = Game Development
8. Python + Kivy = Mobile App Development
#Python
Python, the versatile language, can be combined with various libraries to build amazing things:๐
1. Python + Pandas = Data Manipulation
2. Python + Scikit-Learn = Machine Learning
3. Python + TensorFlow = Deep Learning
4. Python + Matplotlib = Data Visualization
5. Python + Seaborn = Advanced Visualization
6. Python + Flask = Web Development
7. Python + Pygame = Game Development
8. Python + Kivy = Mobile App Development
#Python
๐7
  ๐ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐๐๐ฅ๐ญ ๐ข๐ฆ๐ฉ๐จ๐ฌ๐ฌ๐ข๐๐ฅ๐ ๐๐ญ ๐๐ข๐ซ๐ฌ๐ญ, ๐๐ฎ๐ญ ๐ญ๐ก๐๐ฌ๐ ๐ ๐ฌ๐ญ๐๐ฉ๐ฌ ๐๐ก๐๐ง๐ ๐๐ ๐๐ฏ๐๐ซ๐ฒ๐ญ๐ก๐ข๐ง๐ !
.
.
1๏ธโฃ ๐๐๐ฌ๐ญ๐๐ซ๐๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ: Started with foundational Python concepts like variables, loops, functions, and conditional statements.
2๏ธโฃ ๐๐ซ๐๐๐ญ๐ข๐๐๐ ๐๐๐ฌ๐ฒ ๐๐ซ๐จ๐๐ฅ๐๐ฆ๐ฌ: Focused on beginner-friendly problems on platforms like LeetCode and HackerRank to build confidence.
3๏ธโฃ ๐ ๐จ๐ฅ๐ฅ๐จ๐ฐ๐๐ ๐๐ฒ๐ญ๐ก๐จ๐ง-๐๐ฉ๐๐๐ข๐๐ข๐ ๐๐๐ญ๐ญ๐๐ซ๐ง๐ฌ: Studied essential problem-solving techniques for Python, like list comprehensions, dictionary manipulations, and lambda functions.
4๏ธโฃ ๐๐๐๐ซ๐ง๐๐ ๐๐๐ฒ ๐๐ข๐๐ซ๐๐ซ๐ข๐๐ฌ: Explored popular libraries like Pandas, NumPy, and Matplotlib for data manipulation, analysis, and visualization.
5๏ธโฃ ๐ ๐จ๐๐ฎ๐ฌ๐๐ ๐จ๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Built small projects like a to-do app, calculator, or data visualization dashboard to apply concepts.
6๏ธโฃ ๐๐๐ญ๐๐ก๐๐ ๐๐ฎ๐ญ๐จ๐ซ๐ข๐๐ฅ๐ฌ: Followed creators like CodeWithHarry and Shradha Khapra for in-depth Python tutorials.
7๏ธโฃ ๐๐๐๐ฎ๐ ๐ ๐๐ ๐๐๐ ๐ฎ๐ฅ๐๐ซ๐ฅ๐ฒ: Made it a habit to debug and analyze code to understand errors and optimize solutions.
8๏ธโฃ ๐๐จ๐ข๐ง๐๐ ๐๐จ๐๐ค ๐๐จ๐๐ข๐ง๐ ๐๐ก๐๐ฅ๐ฅ๐๐ง๐ ๐๐ฌ: Participated in coding challenges to simulate real-world problem-solving scenarios.
9๏ธโฃ ๐๐ญ๐๐ฒ๐๐ ๐๐จ๐ง๐ฌ๐ข๐ฌ๐ญ๐๐ง๐ญ: Practiced daily, worked on diverse problems, and never skipped Python for more than a day.
I have curated the best interview resources to crack Python Interviews ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
#Python
.
.
1๏ธโฃ ๐๐๐ฌ๐ญ๐๐ซ๐๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ: Started with foundational Python concepts like variables, loops, functions, and conditional statements.
2๏ธโฃ ๐๐ซ๐๐๐ญ๐ข๐๐๐ ๐๐๐ฌ๐ฒ ๐๐ซ๐จ๐๐ฅ๐๐ฆ๐ฌ: Focused on beginner-friendly problems on platforms like LeetCode and HackerRank to build confidence.
3๏ธโฃ ๐ ๐จ๐ฅ๐ฅ๐จ๐ฐ๐๐ ๐๐ฒ๐ญ๐ก๐จ๐ง-๐๐ฉ๐๐๐ข๐๐ข๐ ๐๐๐ญ๐ญ๐๐ซ๐ง๐ฌ: Studied essential problem-solving techniques for Python, like list comprehensions, dictionary manipulations, and lambda functions.
4๏ธโฃ ๐๐๐๐ซ๐ง๐๐ ๐๐๐ฒ ๐๐ข๐๐ซ๐๐ซ๐ข๐๐ฌ: Explored popular libraries like Pandas, NumPy, and Matplotlib for data manipulation, analysis, and visualization.
5๏ธโฃ ๐ ๐จ๐๐ฎ๐ฌ๐๐ ๐จ๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Built small projects like a to-do app, calculator, or data visualization dashboard to apply concepts.
6๏ธโฃ ๐๐๐ญ๐๐ก๐๐ ๐๐ฎ๐ญ๐จ๐ซ๐ข๐๐ฅ๐ฌ: Followed creators like CodeWithHarry and Shradha Khapra for in-depth Python tutorials.
7๏ธโฃ ๐๐๐๐ฎ๐ ๐ ๐๐ ๐๐๐ ๐ฎ๐ฅ๐๐ซ๐ฅ๐ฒ: Made it a habit to debug and analyze code to understand errors and optimize solutions.
8๏ธโฃ ๐๐จ๐ข๐ง๐๐ ๐๐จ๐๐ค ๐๐จ๐๐ข๐ง๐ ๐๐ก๐๐ฅ๐ฅ๐๐ง๐ ๐๐ฌ: Participated in coding challenges to simulate real-world problem-solving scenarios.
9๏ธโฃ ๐๐ญ๐๐ฒ๐๐ ๐๐จ๐ง๐ฌ๐ข๐ฌ๐ญ๐๐ง๐ญ: Practiced daily, worked on diverse problems, and never skipped Python for more than a day.
I have curated the best interview resources to crack Python Interviews ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
#Python
โค4๐1
  