๐ด How to MASTER a programming language using ChatGPT: ๐
1. Can you provide some tips and best practices for writing clean and efficient code in [lang]?
2. What are some commonly asked interview questions about [lang]?
3. What are the advanced topics to learn in [lang]? Explain them to me with code examples.
4. Give me some practice questions along with solutions for [concept] in [lang].
5. What are some common mistakes that people make in [lang]?
6. Can you provide some tips and best practices for writing clean and efficient code in [lang]?
7. How can I optimize the performance of my code in [lang]?
8. What are some coding exercises or mini-projects I can do regularly to reinforce my understanding and application of [lang] concepts?
9. Are there any specific tools or frameworks that are commonly used in [lang]? How can I learn and utilize them effectively?
10. What are the debugging techniques and tools available in [lang] to help troubleshoot and fix code issues?
11. Are there any coding conventions or style guidelines that I should follow when writing code in [lang]?
12. How can I effectively collaborate with other developers in [lang] on a project?
13. What are some common data structures and algorithms that I should be familiar with in [lang]?
How to Create Resume using ChatGPT ๐๐
https://t.me/free4unow_backup/687
Master DSA ๐๐
https://t.me/dsabooks/156
Like for more โค๏ธ
#ai
1. Can you provide some tips and best practices for writing clean and efficient code in [lang]?
2. What are some commonly asked interview questions about [lang]?
3. What are the advanced topics to learn in [lang]? Explain them to me with code examples.
4. Give me some practice questions along with solutions for [concept] in [lang].
5. What are some common mistakes that people make in [lang]?
6. Can you provide some tips and best practices for writing clean and efficient code in [lang]?
7. How can I optimize the performance of my code in [lang]?
8. What are some coding exercises or mini-projects I can do regularly to reinforce my understanding and application of [lang] concepts?
9. Are there any specific tools or frameworks that are commonly used in [lang]? How can I learn and utilize them effectively?
10. What are the debugging techniques and tools available in [lang] to help troubleshoot and fix code issues?
11. Are there any coding conventions or style guidelines that I should follow when writing code in [lang]?
12. How can I effectively collaborate with other developers in [lang] on a project?
13. What are some common data structures and algorithms that I should be familiar with in [lang]?
How to Create Resume using ChatGPT ๐๐
https://t.me/free4unow_backup/687
Master DSA ๐๐
https://t.me/dsabooks/156
Like for more โค๏ธ
#ai
๐13๐1
Hard Pill To Swallow: ๐
Robots arenโt stealing your future - theyโre taking the boring jobs.
Meanwhile:
- Some YouTuber made six figures sharing what she loves.
- A teen's random app idea just got funded.
- My friend quit banking to teach coding - he's killing it.
Hereโs the thing:
Hard work still matters. But the rules of the game have changed.
The real money is in solving problems, spreading ideas, and building cool stuff.
Call it evolution. Call it disruption. Whatever.
Crying about the old world won't help you thrive in the new one.
Create something.โจ
#ai
Robots arenโt stealing your future - theyโre taking the boring jobs.
Meanwhile:
- Some YouTuber made six figures sharing what she loves.
- A teen's random app idea just got funded.
- My friend quit banking to teach coding - he's killing it.
Hereโs the thing:
Hard work still matters. But the rules of the game have changed.
The real money is in solving problems, spreading ideas, and building cool stuff.
Call it evolution. Call it disruption. Whatever.
Crying about the old world won't help you thrive in the new one.
Create something.โจ
#ai
๐20โค13๐5๐3
AI/ML Roadmap๐จ๐ปโ๐ป๐พ๐ค -
==== Step 1: Basics ====
๐ Learn Math (Linear Algebra, Probability).
๐ค Understand AI/ML Fundamentals (Supervised vs Unsupervised).
==== Step 2: Machine Learning ====
๐ข Clean & Visualize Data (Pandas, Matplotlib).
๐๏ธโโ๏ธ Learn Core Algorithms (Linear Regression, Decision Trees).
๐ฆ Use scikit-learn to implement models.
==== Step 3: Deep Learning ====
๐ก Understand Neural Networks.
๐ผ๏ธ Learn TensorFlow or PyTorch.
๐ค Build small projects (Image Classifier, Chatbot).
==== Step 4: Advanced Topics ====
๐ณ Study Advanced Algorithms (Random Forest, XGBoost).
๐ฃ๏ธ Dive into NLP or Computer Vision.
๐น๏ธ Explore Reinforcement Learning.
==== Step 5: Build & Share ====
๐จ Create real-world projects.
๐ Deploy with Flask, FastAPI, or Cloud Platforms.
#ai #ml
==== Step 1: Basics ====
๐ Learn Math (Linear Algebra, Probability).
๐ค Understand AI/ML Fundamentals (Supervised vs Unsupervised).
==== Step 2: Machine Learning ====
๐ข Clean & Visualize Data (Pandas, Matplotlib).
๐๏ธโโ๏ธ Learn Core Algorithms (Linear Regression, Decision Trees).
๐ฆ Use scikit-learn to implement models.
==== Step 3: Deep Learning ====
๐ก Understand Neural Networks.
๐ผ๏ธ Learn TensorFlow or PyTorch.
๐ค Build small projects (Image Classifier, Chatbot).
==== Step 4: Advanced Topics ====
๐ณ Study Advanced Algorithms (Random Forest, XGBoost).
๐ฃ๏ธ Dive into NLP or Computer Vision.
๐น๏ธ Explore Reinforcement Learning.
==== Step 5: Build & Share ====
๐จ Create real-world projects.
๐ Deploy with Flask, FastAPI, or Cloud Platforms.
#ai #ml
๐15โค4
Master AI (Artificial Intelligence) in 10 days ๐๐
#AI
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Free Resources: https://t.me/machinelearning_deeplearning
Share for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
#AI
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Free Resources: https://t.me/machinelearning_deeplearning
Share for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
๐4โค1
Artificial Intelligence isn't easy!
Itโs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldโstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
๐ก Embrace the journey of learning and building systems that can reason, understand, and adapt.
โณ With dedication, hands-on practice, and continuous learning, youโll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
Itโs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldโstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
๐ก Embrace the journey of learning and building systems that can reason, understand, and adapt.
โณ With dedication, hands-on practice, and continuous learning, youโll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
๐10โค2
Master AI (Artificial Intelligence) in 10 days ๐๐
#AI
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Free Resources: https://t.me/machinelearning_deeplearning
Share for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
#AI
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Free Resources: https://t.me/machinelearning_deeplearning
Share for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
๐6โค2
TensorFlow v2.0 Cheat Sheet
#TensorFlow is an open-source software library for highperformance numerical computation. Its flexible architecture enables to easily deploy computation across a variety of platforms (CPUs, GPUs, and TPUs), as well as mobile and edge devices, desktops, and clusters of servers. TensorFlow comes with strong support for machine learning and deep learning.
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
๐4โค1
Media is too big
VIEW IN TELEGRAM
๐ฅ MIT has updated its famous course 6.S191: Introduction to Deep Learning.
All slides, #code and additional materials can be found at the link provided.
๐ Fresh lecture : https://youtu.be/alfdI7S6wCY?si=6682DD2LlFwmghew
The program covers topics of #NLP, #CV, #LLM and the use of technology in medicine, offering a full cycle of training - from theory to practical classes using current versions of libraries..
The course is designed even for beginners: if you know how to take derivatives and multiply matrices, everything else will be explained in the process.
The lectures are released for free on YouTube and the #MIT platform on Mondays, with the first one already available
All slides, #code and additional materials can be found at the link provided.
๐ Fresh lecture : https://youtu.be/alfdI7S6wCY?si=6682DD2LlFwmghew
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence
โค4
๐ ๐๐ฎ๐ฌ๐ญ-๐๐๐ญ๐๐ก ๐๐ ๐๐๐ ๐๐๐ฅ๐ค๐ฌ
โฉ The inside story of ChatGPT's astonishing potential by Greg Brockman. https://youtu.be/C_78DM8fG6E?si=kdGNA1PvO1lb7L8t
โฉ How AI could save (not destroy) education by Sal Khan
https://youtu.be/hJP5GqnTrNo?si=wlD-SOjr5ZxLQ0vQ
โฉ How to keep AI under control by Max Tegmark
https://youtu.be/xUNx_PxNHrY?si=e8JDz9up3IRYmBo5
โฉ How to think computationally about AI, the universe, and everything by Stephen Wolfram
https://youtu.be/fLMZAHyrpyo?si=5O1b63qgga89rEOb
โฉ The dark side of competition in AI by Liv Boeree
https://youtu.be/WX_vN1QYgmE?si=QDMlKkrxqrSCdFkr
โฉ How AI art could enhance humanity's collective memory by Refik Anadol
https://youtu.be/iz7diOuaTos?si=iyQOF20jZp78hfo2
โฉ Why AI is incredibly smart and shockingly stupid by Yejin Choil
https://youtu.be/SvBR0OGT5VI?si=rLhDzmohC_dPfrtM
โฉ Will superintelligent AI end the world by Eliezer Yudkowsky
https://youtu.be/Yd0yQ9yxSYY?si=JqN2yNgP0IOTnjN1
#ai
โฉ The inside story of ChatGPT's astonishing potential by Greg Brockman. https://youtu.be/C_78DM8fG6E?si=kdGNA1PvO1lb7L8t
โฉ How AI could save (not destroy) education by Sal Khan
https://youtu.be/hJP5GqnTrNo?si=wlD-SOjr5ZxLQ0vQ
โฉ How to keep AI under control by Max Tegmark
https://youtu.be/xUNx_PxNHrY?si=e8JDz9up3IRYmBo5
โฉ How to think computationally about AI, the universe, and everything by Stephen Wolfram
https://youtu.be/fLMZAHyrpyo?si=5O1b63qgga89rEOb
โฉ The dark side of competition in AI by Liv Boeree
https://youtu.be/WX_vN1QYgmE?si=QDMlKkrxqrSCdFkr
โฉ How AI art could enhance humanity's collective memory by Refik Anadol
https://youtu.be/iz7diOuaTos?si=iyQOF20jZp78hfo2
โฉ Why AI is incredibly smart and shockingly stupid by Yejin Choil
https://youtu.be/SvBR0OGT5VI?si=rLhDzmohC_dPfrtM
โฉ Will superintelligent AI end the world by Eliezer Yudkowsky
https://youtu.be/Yd0yQ9yxSYY?si=JqN2yNgP0IOTnjN1
#ai
๐8โค2
Artificial Intelligence isn't easy!
Itโs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldโstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
๐ก Embrace the journey of learning and building systems that can reason, understand, and adapt.
โณ With dedication, hands-on practice, and continuous learning, youโll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
Itโs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldโstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
๐ก Embrace the journey of learning and building systems that can reason, understand, and adapt.
โณ With dedication, hands-on practice, and continuous learning, youโll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
๐11โค2
Master AI (Artificial Intelligence) in 10 days ๐๐
#AI
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Free Resources: https://t.me/machinelearning_deeplearning
Share for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
#AI
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Free Resources: https://t.me/machinelearning_deeplearning
Share for more: https://t.me/datasciencefun
ENJOY LEARNING ๐๐
๐2
โค1
Stanfordโs Machine Learning - by Andrew Ng
A complete lecture notes of 227 pages. Available Free.
Download the notes:
cs229.stanford.edu/main_notes.pdf
A complete lecture notes of 227 pages. Available Free.
Download the notes:
cs229.stanford.edu/main_notes.pdf
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras โ
๐5