MCP и Function Calling: соперники или дополняющие друг друга технологии ?
В мире искусственного интеллекта постоянно появляются новые технологии и стандарты, которые могут сбивать с толку даже опытных разработчиков. Одна из таких пар технологий — MCP (Model Сontext Protocol) и Function Calling. Давайте разберемся, в чем их отличия и могут ли они дополнять друг друга.
Главный спойлер:они не конкурируют, а дополняют друг друга! 🤝
Про MCP уже много раз писал здесь и тут, поэтому начнем с технологии Function Calling, которая "календарно" появилась значительно раньше, но сейчас по силе "хайпа" значительно уступает MCP.
Что такое Function Calling?
Function Calling — это способность языковых моделей (LLM) определять, когда необходимо использовать внешние инструменты для решения задачи. По сути, это механизм, который позволяет ИИ:
1️⃣ Распознавать ситуации, требующие применения внешних функций
2️⃣ Структурировать параметры для выполнения этих функций
3️⃣ Работать в контексте одного приложения
4️⃣ Определять, ЧТО и КОГДА нужно использовать
При этом сам процесс запуска инструмента остается на стороне разработчика.
Простыми словами: Function Calling — это когда ИИ говорит "Мне нужно сейчас выполнить поиск в интернете".
Что такое MCP?
MCP (Model Context Protocol) — это стандартизированный протокол, который определяет:
1️⃣ Как инструменты предоставляются и обнаруживаются
2️⃣ Последовательный протокол для хостинга инструментов
3️⃣ Возможность обмена инструментами в рамках всей экосистемы
4️⃣ Разделение реализации инструмента от его использования
MCP отвечает на вопрос КАК инструменты предоставляются и обнаруживаются стандартизированным способом. Это похоже на то, как если бы MCP говорил: "Вот как любой инструмент может быть последовательно доступен для любой системы ИИ".
Ключевые различия ⚡️
• Function Calling: определяет КАКОЙ инструмент использовать и КОГДА его применять
• MCP: устанавливает КАК инструменты предоставляются и обнаруживаются в стандартизированном виде
Почему это важно? 🤔
MCP имеет потенциал стать "REST для ИИ-инструментов" — повсеместным стандартом, который предотвращает фрагментацию экосистемы. Он позволяет разработчикам сосредоточиться на создании качественных инструментов, а не на изобретении новых способов их хостинга
Как они работают вместе?
Эти технологии не конкурируют, а дополняют друг друга:
• Function Calling определяет необходимость использования инструмента
• MCP обеспечивает стандартизированный способ доступа к этому инструменту
Важные мысли 💡
• По мере усложнения систем ИИ, стандартизированные протоколы вроде MCP становятся необходимыми для обеспечения совместимости.
• Компании, которые внедряют обе технологии, смогут быстрее создавать более надежные системы ИИ.
• В конечном счете, будущее не в выборе между MCP и Function Calling, а в их эффективном совместном использовании для создания более мощных и гибких ИИ-систем.
Что еще почитать по теме "Function Calling и/или MCP?"
• https://medium.com/@genai.works/%EF%B8%8F-function-calling-vs-mcp-what-smart-ai-teams-need-to-know-7c319267b6db
• https://www.gentoro.com/blog/function-calling-vs-model-context-protocol-mcp
• https://neon.tech/blog/mcp-vs-llm-function-calling
А вы уже используете MCP в своих проектах или пока ограничиваетесь базовым Function Calling?
Поделитесь своим опытом в комментариях! 👇
#ИскусственныйИнтеллект #LLM #MCP #FunctionCalling #РазработкаИИ
В мире искусственного интеллекта постоянно появляются новые технологии и стандарты, которые могут сбивать с толку даже опытных разработчиков. Одна из таких пар технологий — MCP (Model Сontext Protocol) и Function Calling. Давайте разберемся, в чем их отличия и могут ли они дополнять друг друга.
Главный спойлер:
Про MCP уже много раз писал здесь и тут, поэтому начнем с технологии Function Calling, которая "календарно" появилась значительно раньше, но сейчас по силе "хайпа" значительно уступает MCP.
Что такое Function Calling?
Function Calling — это способность языковых моделей (LLM) определять, когда необходимо использовать внешние инструменты для решения задачи. По сути, это механизм, который позволяет ИИ:
1️⃣ Распознавать ситуации, требующие применения внешних функций
2️⃣ Структурировать параметры для выполнения этих функций
3️⃣ Работать в контексте одного приложения
4️⃣ Определять, ЧТО и КОГДА нужно использовать
При этом сам процесс запуска инструмента остается на стороне разработчика.
Простыми словами: Function Calling — это когда ИИ говорит "Мне нужно сейчас выполнить поиск в интернете".
Что такое MCP?
MCP (Model Context Protocol) — это стандартизированный протокол, который определяет:
1️⃣ Как инструменты предоставляются и обнаруживаются
2️⃣ Последовательный протокол для хостинга инструментов
3️⃣ Возможность обмена инструментами в рамках всей экосистемы
4️⃣ Разделение реализации инструмента от его использования
MCP отвечает на вопрос КАК инструменты предоставляются и обнаруживаются стандартизированным способом. Это похоже на то, как если бы MCP говорил: "Вот как любой инструмент может быть последовательно доступен для любой системы ИИ".
Ключевые различия ⚡️
• Function Calling: определяет КАКОЙ инструмент использовать и КОГДА его применять
• MCP: устанавливает КАК инструменты предоставляются и обнаруживаются в стандартизированном виде
Почему это важно? 🤔
MCP имеет потенциал стать "REST для ИИ-инструментов" — повсеместным стандартом, который предотвращает фрагментацию экосистемы. Он позволяет разработчикам сосредоточиться на создании качественных инструментов, а не на изобретении новых способов их хостинга
Как они работают вместе?
Эти технологии не конкурируют, а дополняют друг друга:
• Function Calling определяет необходимость использования инструмента
• MCP обеспечивает стандартизированный способ доступа к этому инструменту
Важные мысли 💡
• По мере усложнения систем ИИ, стандартизированные протоколы вроде MCP становятся необходимыми для обеспечения совместимости.
• Компании, которые внедряют обе технологии, смогут быстрее создавать более надежные системы ИИ.
• В конечном счете, будущее не в выборе между MCP и Function Calling, а в их эффективном совместном использовании для создания более мощных и гибких ИИ-систем.
Что еще почитать по теме "Function Calling и/или MCP?"
• https://medium.com/@genai.works/%EF%B8%8F-function-calling-vs-mcp-what-smart-ai-teams-need-to-know-7c319267b6db
• https://www.gentoro.com/blog/function-calling-vs-model-context-protocol-mcp
• https://neon.tech/blog/mcp-vs-llm-function-calling
А вы уже используете MCP в своих проектах или пока ограничиваетесь базовым Function Calling?
Поделитесь своим опытом в комментариях! 👇
#ИскусственныйИнтеллект #LLM #MCP #FunctionCalling #РазработкаИИ
❤2👍2🔥2