Заметки LLM-энтузиаста
545 subscribers
150 photos
17 videos
1 file
180 links
Дмитрий Жечков @djdim
архитектор в Yandex Cloud,
ex. VMware NSX specialist, ex. Cisco SE

Здесь пишу свои заметки по LLM (большим языковым моделям) и AI-разработке.

Это личное мнение и не отражает официальную позицию компании, в которой я работаю.
Download Telegram
8. OpenMCP: стандартизация доступа к веб-API 🌐

OpenMCP — стандарт и реестр для соединения ИИ-инструментов с веб-API.

Функциональность:

• Преобразование веб-API в MCP
• Взаимодействие MCP-клиентов с различными сервисами
• Открытый реестр серверов
• Поддержка форматов REST, gRPC и GraphQL
• Инструменты для разработчиков
• Упрощенное добавление серверов к MCP-клиентам

9. Aseprite MCP Server: интеграция с редактором пиксельной графики 🎨

Aseprite MCP Server интегрирует ИИ-помощников с редактором пиксельной графики Aseprite.

Функциональность:
• Взаимодействие с Aseprite через текстовые команды
• API-уровневая коммуникация через MCP
• Автоматизация создания кадров анимации и модификации палитр
• Выполнение повторяющихся действий через команды

10. Pipedream: соединение приложение и автоматизация ⚙️

Pipedream — платформа для быстрого соединения приложений и создания автоматизаций.

Функциональность:

• Бесплатная среда для разработчиков
• Более 1000 интеграционных компонентов
• Подключение к популярным сервисам (Slack, Google Sheets)
• Поддержка пользовательского кода (Node.js, Python, Golang, Bash)
• Низкокодовый подход
• Архитектура, управляемая событиями
• Триггеры от различных источников
• Предварительно созданные действия для типовых операций

Вышеуказанные MCP-серверы предоставляют широкие возможности для агентной автоматизации и интеграции ИИ в различные рабочие процессы — от исследовательских задач до создания контента и управления данными. 🚀

#ИскусственныйИнтеллект #MCP #ИИагенты #Технологии #Автоматизация
👍42
#mcp #api #tools #ai #dev

🚀 6 инструментов для преобразования API в MCP-серверы

Привет, друзья! Сегодня делюсь полезной подборкой для разработчиков. Если вам нужно быстро адаптировать ваши API для работы с ИИ-агентами, эти инструменты сэкономят кучу времени 👇

1️⃣ FastAPI-MCP

Чуть выше писал об этом инструменте, здесь коротко повторюсь.
Позволяет преобразовать FastAPI end points в MCP-серверы одной строкой кода с нативной поддержкой аутентификации. Сохраняет все схемы и зависимости. Полностью с открытым исходным кодом.

2️⃣ RapidMCP

Преобразует REST API в MCP-сервер за считанные минуты без изменения кода. Просто подключите ваш API и преобразуйте его в MCP-сервер, готовый для работы с ИИ-агентами - без необходимости модификации бэкенда.
Есть платный и бесплатные тарифы.

3️⃣ MCPify

Позволяет создавать и разворачивайть MCP-серверы без написания ни единой строчки кода. Похож на Lovable/Bolt/V0 но для создания MCP-серверов. Поддерживает транспорт Streamable HTTP от MCP. Вы также можете делиться созданными MCP-серверами с другими пользователями на той же платформе.
Есть только платные тарифы.
Некоторым аналогом, но более широкого плана может являться Databutton (см. ниже)

4️⃣ Databutton MCP

Превратите любое Databutton-приложение в MCP-сервер одним кликом через настройки. Создавайте инструменты для ИИ так же, как API для вашего приложения, с возможностью добавления Python-документации для лучшего понимания агентом. Databutton размещает MCP-серверы онлайн, избавляя от необходимости локального запуска и позволяя легко интегрироваться с Claude Desktop и другими ИИ-ассистентами. Идеально подходит для создания инструментов для исследования, маркетинга и продаж.
Про Data Button писал в обзоре AI инструментов для Vibe Coding (оригинальный пост здесь)

5️⃣ Speakeasy

Генерирует MCP-серверы напрямую из документации OpenAPI с минимальным кодом. Создает TypeScript MCP-серверы с настраиваемыми описаниями инструментов и областями применения. На данный момент функциональность в Beta.

6️⃣ Higress от Alibaba

Преобразует спецификации OpenAPI в MCP-серверы одной командой. Инструмент openapi-to-mcp от Higress автоматически конвертирует документацию API в серверы с подробными шаблонами ответов. Развертывание без инфраструктуры. Полностью с открытым исходным кодом.

А какие инструменты используете вы? Делитесь в комментариях! 👇

#разработка #API #MCP #инструменты
4🔥3
Опасная уязвимость в Chrome-расширениях: доступ к MCP-серверам

Поговорим немного про безопасность в контексте MCP.
Исследователи из ExtensionTotal обнаружили серьезную уязвимость в экосистеме Chrome-расширений, позволяющую обойти защитную "песочницу" браузера. Проблема связана с Model Context Protocol (MCP) - протоколом, который используется для взаимодействия ИИ-агентов с системными инструментами.

Суть проблемы:
• Chrome-расширения могут без аутентификации подключаться к локальным MCP-серверам
MCP-серверы по умолчанию не требуют аутентификации
• Через такое подключение расширение получает доступ к файловой системе и другим ресурсам

Последствия:
• Полный обход защитной "песочницы" Chrome
• Неограниченный доступ к файловой системе
• Возможность взаимодействия с приложениями (Slack, WhatsApp и др.)
• Потенциальный полный захват компьютера

Особенно тревожно то, что для эксплуатации этой уязвимости расширению не требуются специальные разрешения. Если на компьютере запущен уязвимый MCP-сервер, любое расширение может получить к нему доступ.

Рекомендуется пересмотреть политики безопасности при использовании MCP-серверов и внимательно следить за поведением установленных расширений.

Или как вариант не устанавливать MCP-серверы локально, а использовать внешние платформы хостинга MCP-серверов с аутентфикацией, например:
https://mcp.pipedream.com/
https://mcp.composio.dev/

#кибербезопасность #Chrome #уязвимости #MCP #ИИ #security
👍43🔥1
MCP и Function Calling: соперники или дополняющие друг друга технологии ?

В мире искусственного интеллекта постоянно появляются новые технологии и стандарты, которые могут сбивать с толку даже опытных разработчиков. Одна из таких пар технологий — MCP (Model Сontext Protocol) и Function Calling. Давайте разберемся, в чем их отличия и могут ли они дополнять друг друга.

Главный спойлер: они не конкурируют, а дополняют друг друга! 🤝

Про MCP уже много раз писал здесь и тут, поэтому начнем с технологии Function Calling, которая "календарно" появилась значительно раньше, но сейчас по силе "хайпа" значительно уступает MCP.

Что такое Function Calling?

Function Calling — это способность языковых моделей (LLM) определять, когда необходимо использовать внешние инструменты для решения задачи. По сути, это механизм, который позволяет ИИ:

1️⃣ Распознавать ситуации, требующие применения внешних функций
2️⃣ Структурировать параметры для выполнения этих функций
3️⃣ Работать в контексте одного приложения
4️⃣ Определять, ЧТО и КОГДА нужно использовать

При этом сам процесс запуска инструмента остается на стороне разработчика.
Простыми словами: Function Calling — это когда ИИ говорит "Мне нужно сейчас выполнить поиск в интернете".

Что такое MCP?

MCP (Model Context Protocol) — это стандартизированный протокол, который определяет:

1️⃣ Как инструменты предоставляются и обнаруживаются
2️⃣ Последовательный протокол для хостинга инструментов
3️⃣ Возможность обмена инструментами в рамках всей экосистемы
4️⃣ Разделение реализации инструмента от его использования

MCP отвечает на вопрос КАК инструменты предоставляются и обнаруживаются стандартизированным способом. Это похоже на то, как если бы MCP говорил: "Вот как любой инструмент может быть последовательно доступен для любой системы ИИ".

Ключевые различия ⚡️

Function Calling: определяет КАКОЙ инструмент использовать и КОГДА его применять
MCP: устанавливает КАК инструменты предоставляются и обнаруживаются в стандартизированном виде

Почему это важно? 🤔

MCP имеет потенциал стать "REST для ИИ-инструментов" — повсеместным стандартом, который предотвращает фрагментацию экосистемы. Он позволяет разработчикам сосредоточиться на создании качественных инструментов, а не на изобретении новых способов их хостинга

Как они работают вместе?

Эти технологии не конкурируют, а дополняют друг друга:

• Function Calling определяет необходимость использования инструмента
MCP обеспечивает стандартизированный способ доступа к этому инструменту

Важные мысли 💡

• По мере усложнения систем ИИ, стандартизированные протоколы вроде MCP становятся необходимыми для обеспечения совместимости.
• Компании, которые внедряют обе технологии, смогут быстрее создавать более надежные системы ИИ.
• В конечном счете, будущее не в выборе между MCP и Function Calling, а в их эффективном совместном использовании для создания более мощных и гибких ИИ-систем.

Что еще почитать по теме "Function Calling и/или MCP?"

https://medium.com/@genai.works/%EF%B8%8F-function-calling-vs-mcp-what-smart-ai-teams-need-to-know-7c319267b6db
https://www.gentoro.com/blog/function-calling-vs-model-context-protocol-mcp
https://neon.tech/blog/mcp-vs-llm-function-calling

А вы уже используете MCP в своих проектах или пока ограничиваетесь базовым Function Calling?
Поделитесь своим опытом в комментариях! 👇

#ИскусственныйИнтеллект #LLM #MCP #FunctionCalling #РазработкаИИ
2👍2🔥2
Недавно наткнулся на интересную заметку на редите по поводу безопасной работы с хостинговыми MCP-серверами. Почему, лучше использовать их, а не локальные серверы писал чуть ранее. Однако, и при использовании хостинговых MCP-сервисов тоже нужно соблюдать некоторые правила, на чем и делается акцент в данной заметке. Ниже привожу ее слегка вольный перевод на русский язык.

URL-адреса хостинговых MCP-серверов следует рассматривать как секреты 🔐

Краткая версия: нынешний ажиотаж вокруг хостинговых MCP-серверов сопровождается некоторыми сомнительными практиками в области безопасности. ⚠️ Черновик следующей редакции протокола MCP стремится решить эту проблему с поддержкой авторизации. А пока... будьте осторожны с этими URL-адресами хостинговых MCP-серверов! 🚨

Недавно я решил взглянуть на Composio 🧐, который привлек некоторое внимание в последние дни. Это платформа, которая размещает и запускает MCP-серверы, предоставляя конечную точку на основе Server Sent Events, к которой могут обращаться MCP-совместимые клиенты для получения данных.

Как это работает:
• Composio позволяет выбрать интеграцию (например, с Notion 📝)
• Вы аутентифицируетесь с помощью OAuth2
• Composio запускает хостинговый MCP-сервер в бессерверном контейнере
• Сервер использует ваш OAuth-токен для взаимодействия с API
• Вы получаете URL вашего сервера: https://mcp.composio.dev/notion/blah-blah-blah-uuid123

Проблема безопасности 🛡

Главная проблема:
• Этот URL фактически является API-ключом с доступом ко всем вашим данным 😱
• Большинство людей бездумно копируют эти URL в разные клиенты
• Никто не знает, как эти клиенты хранят то, что должно быть секретом 🤦‍♂️
• API-ключи и секреты должны храниться только в переменных окружения или безопасных хранилищах

Мое примечание: я сам, недавно проводя занятия по созданию MCP-серверов, спокойно шарил эти url, потом пришлось все удалять и пересоздавать заново.

Что делать:
• Разработчики MCP осведомлены об этой проблеме 👍
• В спецификации есть раздел "Third party authorization flow"
• Разработчикам сервисов вроде Composio следует реализовать эти меры безопасности
• А пока — будьте осторожны с URL-адресами хостинговых MCP-серверов! 🔒

Не разбрасывайтесь URL-адресами как конфетти на параде технологических новинок. 🎭

#MCP #Безопасность #Composio #ИскусственныйИнтеллект #security
👍31🔥1
Git-MCP: Решение проблем с контекстом для AI-кодеров 🧠

Проблема контекста в AI-кодерах

Работая с AI-ассистентами вроде Cursor, многие как и я сталкиваются с одной и той же проблемой: модели имеют ограниченные знания о новых библиотеках и инструментах из-за даты отсечения обучения. 📅

Существующие решения не идеальны:

1️⃣ Ручное объяснение или вставка кода (утомительно)

2️⃣ Прямая ссылка на документацию (перегружает контекст)

3️⃣ Context7 MCP (все классно: используется RAG и в контекст AI-кодера добавляется только нужный для работы в данный момент раздел свежей документации, но работает нестабильно, иногда игнорируется AI-кодером)

Git-MCP: элегантное решение 🛠

Git-MCP — инструмент, который превращает любой GitHub-репозиторий в выделенный MCP-сервер с фокусированной документацией. По сути, это мост между AI-ассистентами и GitHub-репозиториями через Model Context Protocol.

Как это работает:

1️⃣ Замените в URL github.com на gitmcp.io

2️⃣ Получите готовый MCP-сервер для репозитория

3️⃣ Добавьте полученный URL в настройки вашего AI-инструмента

4️⃣ Наслаждайтесь точным контекстом без лишнего шума

Поддерживаемые форматы:

• GitHub репозитории: gitmcp.io/{owner}/{repo}
• GitHub Pages: {owner}.gitmcp.io/{repo}
• Универсальный эндпоинт: gitmcp.io/docs

Интеграция с AI-инструментами:

• Cursor
• Claude Desktop
• Windsurf
• VSCode
• Cline
• Highlight AI

Как Git-
MCP обрабатывает документацию 📚

Система приоритизирует источники в следующем порядке:

1️⃣ llms.txt (AI-оптимизированный формат документации)

2️⃣ AI-оптимизированная версия документации проекта

3️⃣ README.md или корневая документация

Преимущества перед другими решениями 💪

• Минимальная настройка (буквально замена URL)
• Точный и релевантный контекст
• Бесплатное использование
• Возможность самостоятельного хостинга
• Работает с любой средой разработки, поддерживающей MCP

Заключение 🤔

Git-MCP — не панацея, но определенно полезный инструмент в арсенале разработчика, использующего AI-ассистенты. Особенно хорошо работает с GitHub-репозиториями, предоставляя именно тот контекст, который нужен для конкретной задачи.

В отличие от Context7 MCP, который иногда игнорируется AI и начинает искать информацию в интернете, Git-MCP более стабилен и предсказуем.

Стоит попробовать, если вы часто работаете с новыми библиотеками или инструментами, о которых ваш AI-кодер еще не знает. Возможно, это сэкономит вам немало нервов и времени.

Источники:
https://github.com/idosal/git-mcp
https://deepwiki.com/MCP-Mirror/idosal_git-mcp - специально для вас, дорогие читатели, проиндексировал репозиторий в deepwiki, и получил подробную техническую документацию, чтобы можно было более детально ознакомиться с внутренним устройством Git-MCP (одна из схем на скриншоте). Если вам интересно будет прочитать про подобные инструменты автоматизации составления технической документации в следующих постах, то напишите в комментариях или поставьте лайк.

#AI #GitMCP #разработка #Cursor #документация #MCP #инструменты_разработчика #GitHub
👍72🔥1
Media is too big
VIEW IN TELEGRAM
Что такое OpenMemory MCP Server?

OpenMemory MCP Server — это локальная инфраструктура памяти, которая позволяет вашим AI-ассистентам "помнить" контекст при переключении между разными приложениями. Вся информация хранится локально на вашем компьютере, без отправки данных в облако.

По сути, это сервер, который создаёт единый слой памяти для всех ваших MCP-совместимых инструментов. Звучит впечатляюще, хотя на практике это просто означает, что вам не придётся повторять одни и те же инструкции в разных AI-приложениях.

Как это работает?

OpenMemory построен на основе Model Context Protocol (MCP) и предоставляет стандартный набор инструментов для работы с памятью:

add_memories: Сохранение новых объектов памяти
search_memory: Поиск релевантных воспоминаний
list_memories: Просмотр всей сохранённой памяти
delete_all_memories: Полная очистка памяти

Любой MCP-совместимый инструмент может подключиться к серверу и использовать эти API.

Что это даёт на практике?

1️⃣ Доступ к памяти между разными клиентами: сохраните контекст в Cursor и используйте его позже в Claude или Windsurf.

2️⃣ Полностью локальное хранилище: вся память хранится на вашем компьютере, ничего не уходит в облако.

3️⃣ Единый интерфейс для управления памятью: встроенная панель управления OpenMemory позволяет просматривать, добавлять и удалять воспоминания (очень похоже на Memories в Windsurf, которые работают между сессиями, только здесь речь идет про работу между приложениями).

Поддерживаемые клиенты

OpenMemory MCP Server совместим с любым клиентом, поддерживающим Model Context Protocol:

• Cursor
• Claude Desktop
• Windsurf
• Cline и другие

По мере того как всё больше AI-систем будут поддерживать MCP, ваша локальная память станет ещё полезнее.

Установка и настройка

Установка OpenMemory довольно проста и занимает всего несколько минут:

# Клонируем репозиторий
git clone https://github.com/mem0ai/mem0.git
cd openmemory

# Создаём файл .env с ключом OpenAI
cd api
touch .env
echo "OPENAI_API_KEY=your_key_here" > .env

# Возвращаемся в корень проекта и собираем Docker-образы
cd ..
make build

# Запускаем все сервисы
make up

# Запускаем фронтенд
cp ui/.env.example ui/.env
make ui


Для подключения MCP-клиентов вам понадобится ваш ID пользователя:

whoami


Затем добавьте следующую конфигурацию в ваш MCP-клиент:

npx install-mcp i "http://localhost:8765/mcp/<mcp-client>/sse/<your-username>" --client <mcp-client>


Панель управления OpenMemory будет доступна по адресу: http://localhost:3000

Примеры использования

💻 Сценарий 1: Определите технические требования проекта в Claude Desktop, разрабатывайте в Cursor, отлаживайте в Windsurf — всё с общим контекстом через OpenMemory.

⚙️ Сценарий 2: Настройте предпочтительный стиль кода в одном инструменте, и при переключении на другой MCP-клиент эти настройки будут доступны.

📋 Сценарий 3: Сохраните важные детали проекта один раз, а затем получайте к ним доступ из любого совместимого AI-инструмента.

Заключение

OpenMemory MCP Server решает одну из основных проблем современных LLM-инструментов: потерю контекста при переключении между приложениями. Хотя идея интересная, остаётся вопрос, насколько широко будет распространяться поддержка MCP среди популярных AI-инструментов.

Если вы часто переключаетесь между разными AI-ассистентами и устали повторять одно и то же, возможно, стоит попробовать. Но будьте готовы к некоторым техническим сложностям при настройке.

Ссылки:
• GitHub проекта тут
• Официальная документация здесь
• Расширенная документация со схемами здесь

#AITools #openmemory #LocalPrivacy #mcp #AIAssistants
2👍1🔥1
DeepWiki MCP: новый инструмент для работы с документацией GitHub 📚

В дополнениии к GitMCP и Сontext7 Cognition Labs выпустила DeepWiki MCP — бесплатный сервер для интеграции с AI-кодерами вроде Cursor. Инструмент позволяет получать информацию из документации GitHub-репозиториев прямо в процессе написания кода.

Основные возможности:

ask_question — задать вопрос о любом GitHub-репозитории и получить ответ на основе документации
read_wiki_contents — получить детальную документацию из репозитория
read_wiki_structure — просмотреть структуру и разделы документации

Технические особенности:

🔹 Полностью бесплатный и открытый
🔹 Не требует регистрации или аутентификации
🔹 Поддерживает протоколы SSE и Streamable HTTP
🔹 Совместим с любыми MCP-клиентами

Настройка в Cursor:

1️⃣ Для конкретного проекта: создать файл .cursor/mcp.json в папке проекта (жаль нет возможности создавать список проектных mcp-серверов в UI)
2️⃣ Для глобального использования: создать файл ~/.cursor/mcp.json в домашней директории (или в UI)

Базовый URL сервера: https://mcp.deepwiki.com/

Пример настройки:

{
"mcpServers": {
"context7": {
"command": "npx",
"args": [
"-y",
"@upstash/context7-mcp@latest"
]
},
"deepwiki": {
"url": "https://mcp.deepwiki.com/mcp"
}
}
}


Пример использования на скриншоте.

Инструмент может быть полезен разработчикам, которые часто работают с документацией и хотят сократить время на поиск информации.

#mcp #cursor #github #documentation #ai
2👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Zen MCP Server: интеграция Claude Code с другими AI-моделями 🤖

Несмотря на то, что Claude Code необычайно быстр и удобен, думаю, что многие из вас уже сталкивались с ситуацией когда он иногда "слегка забывает" предыдущие шаги при работе со сложными задачами из-за ограничений контекстного окна (даже при использовании опции /compact). В этот момент хочется следовать проверенному временем процессу.
Я когда работаю в Cursor/Windsurf/Roo для анализа существующей кодовой базы обычно использую Gemini 2.5 Pro, а для планирования использую o3 или o3-mini/o4-mini.
При использовании Claude Code у нас есть возможность использовать для планирования и сложного траблшутинга Claude 4 Opus, во всех других случаях - Claude 4 Sonnet.
Claude 4 Opus дорогой и даже при использовании Claude Max 5x плана (за $100 в месяц) можно близко подойти к лимитам его использования, и в голову начинает приходить мысль "а не перейти ли на Max 20x plan за $200 долларов в месяц", которых мне пока что жалко :)

Zen MCP Server позволяет решить эти проблемы, позволяя Claude Code взаимодействовать с другими моделями, у которых и контекстное окно значительно больше, и reasoning-способности на очень хорошем уровне.

Что это дает 📈

• Доступ к Gemini 2.5 Pro с контекстом до 1M токенов
• Работа с GPT O3 и другими моделями
• Возможность передать всю кодовую базу проекта для анализа

Основные инструменты 🛠

1️⃣ chat — мозговой штурм и обзор кода
2️⃣ thinkdeep — глубокий анализ сложных проблем
3️⃣ planner — пошаговое планирование
4️⃣ consensus — получение мнений от нескольких моделей
5️⃣ codereview — профессиональный код-ревью
6️⃣ precommit — проверка перед коммитом
7️⃣ debug — диагностика и исправление багов
8️⃣ analyze — анализ больших файлов
9️⃣ refactor — рефакторинг кода
🔟 tracer — отслеживание зависимостей
1️⃣1️⃣ testgen — генерация тестов
1️⃣2️⃣ настраиваемые инструменты

Поддерживаемые провайдеры 🌐
• Google Gemini (нативный API)
• OpenAI (O3 модель)
• OpenRouter (множество моделей через один API)
• Локальные модели (Ollama, vLLM, LM Studio)

Особенности⚡️
• Автоматический выбор подходящей модели для задачи
• Продолжение диалогов между моделями
• Работа с изображениями и диаграммами
• Обход ограничений MCP в 25K токенов

Проект с открытым исходным кодом, лицензия Apache 2.0.
Deepwiki по проекту здесь.
Настройка через Docker занимает около 5 минут.

@llm_notes

#claude #mcp #ai_tools #code_review #gemini
👍6542
🔧 Полезный инструмент для Claude Code: Claude Code Templates

Для разработчиков, использующих Claude Code, появился полезный ресурс — платформа Claude Code Templates.
Это аналог популярного Playbooks для Cursor/Windsurf (ранее писал про него здесь), но созданный специально для Claude Code.

Что предлагает данный инструмент:

• Готовые AI-агенты (а точнее их полные спецификации с промптами и инструментами) для различных задач разработки
• Настроенные команды для автоматизации рутинных процессов
• Хуки для событийно-ориентированной автоматизации
MCP интеграции с внешними сервисами
• Шаблоны проектов для разных языков и фреймворков

Основные возможности:

1️⃣ Специализированные агенты — от аудитора безопасности до оптимизатора производительности

2️⃣ Библиотека команд — автоматизация тестирования, рефакторинга, деплоя

3️⃣ Интеграции — подключение к GitHub, базам данных, инструментам автоматизации

4️⃣ Аналитическая панель — мониторинг использования Claude Code в реальном времени

5️⃣ Проверка системы — диагностика конфигурации и производительности

Платформа позволяет быстро найти нужный инструмент через поиск, не тратя время на создание решений с нуля. Все компоненты можно устанавливать как полными шаблонами проектов, так и отдельными модулями.

Инструмент распространяется через NPM и GitHub, имеет открытый исходный код и подробную документацию 📚

Есть красивая интеграция с DeepGraph, доступная прямо из UI, но для поиска нужного инструмента (агента, команды, шаблона, mcp и т.п.) под определенную задачу, по моему опыту, лучше использовать DeepWiki (чуть ранее писал о нем тут).

DeepGraph, например, не смог мне по репозиторию рассматриваемого проекта дать ответ на простой вопрос подскажи, какого агента лучше использовать для ревью кода? , хотя в проекте есть готовый суб-агент для решения такой задачи с говорящим названием code-reviewer
При этом DeepWiki на тот же вопрос сразу и достаточно быстро ответил что:
Рекомендуемый агент
code-reviewer - это специализированный агент для экспертного ревью кода, который проактивно проверяет качество, безопасность и поддерживаемость кода components.json:304 . Агент должен использоваться сразу после написания или модификации кода.


@llm_notes

#claudecode #templates #automation #vibecoding #mcp #agents #hooks
🔥43👍2😐1