Эндрю Нг о состоянии AI-агентов: ключевые инсайты 🤖
Вчера на конференции Interrupt от Langchain состоялась беседа со-основателя Langchain Гариссона Чейса с Эндрю Нгом — одним из ведущих экспертов в области ИИ. Ниже мой краткий конспект с выводами о развитии агентных систем.
Агентность vs Агенты 🎯
Нг предлагает думать об агентности как о спектре функций, а не делить системы на "агентные" и "не агентные". Это помогает избежать бесполезных споров и сосредоточиться на практической разработке.
Текущее состояние рынка 📊
Большинство бизнес-процессов представляют собой:
• Линейные рабочие процессы
• Простые ветвления при ошибках
• Небольшие циклы обработки данных
Сложные агентные системы с множественными циклами пока менее распространены.
Ключевые навыки для разработчиков агентов 🛠
1️⃣ Правильная декомпозиция задач
Умение разбивать бизнес-процессы на микрозадачи остается критически важным навыком.
2️⃣ Система оценки (Evals)
Многие команды слишком долго полагаются только на ручную оценку. Автоматизированные evals нужно внедрять быстрее, даже если они изначально несовершенны.
3️⃣ Тактические знания
Опыт работы с различными инструментами (RAG, память, guardrails) как с "кубиками Lego" — чем больше инструментов знаешь, тем быстрее можешь собрать решение.
Недооцененные технологии 🔍
Голосовые приложения 🎙
Несмотря на высокий интерес крупных компаний, разработчики уделяют им недостаточно внимания. Голос снижает барьер входа для пользователей — люди говорят более свободно, чем пишут. Это действительно так: даже у меня уже сформировалась привычка ставить задачу AI-кодеру голосом.
MCP (Model Context Protocol) 🔗
Стандартизирует интеграцию агентов с различными источниками данных. Пока протокол "сырой", но это важный шаг к решению проблемы n×m интеграций.
Программирование с ИИ 💻
Нг выступает против термина "vibe coding", считая его misleading (некорректным). Это интеллектуально сложный процесс, требующий глубокого понимания технологий.
Про глубокое понимание технологий можно, конечно, поспорить.
Порог входа в AI-программирование стремительно снижается. Модели, которые "пишут" код, "умнеют" каждые пол-года. Многие задачи, которые раньше требовали написания сложного PRD (Product Requirement Document) сейчас решаются промптом в 1-2 предложения (которые можно сформулировать голосом).
Большинство даже опенсорсных систем (Cline/Roo Code) уже имеют встроенные "опросники" (Architect Mode) для новичков, которые позволяют максимально точно сформулировать задачу. Коммерческие системы тоже перед решением задачи формируют привычку расспросить новоиспеченных программистов о задаче, которые те собираются решить, предложив возможные варианты (например, claude code или cursor с настроенным соответствующим образом custom agent).
Однако, сам процесс Vibe Coding может быть утомительным, если действительно хочешь решить задачу, а не поиграться.
Важно: Всем стоит изучать программирование, так как умение точно объяснить компьютеру задачу становится ключевым навыком будущего.
Советы для стартапов 🚀
Два главных предиктора успеха:
1️⃣ Скорость выполнения
Опытные команды работают значительно быстрее, чем представляют себе новички.
2️⃣ Техническая экспертиза
Глубокое понимание технологий — самый редкий ресурс, поскольку технологии развиваются очень быстро.
Мультиагентные системы 🤝
Пока рано говорить о взаимодействии агентов от разных команд. Даже создание работающего одиночного агента остается сложной задачей.
• Ссылка на оригинальное видео беседы здесь
• Подробный транскрипт здесь
• Краткий транскрипт тут
#ai_agents #andrew_ng #artificial_intelligence #tech_trends #startup_advice
Вчера на конференции Interrupt от Langchain состоялась беседа со-основателя Langchain Гариссона Чейса с Эндрю Нгом — одним из ведущих экспертов в области ИИ. Ниже мой краткий конспект с выводами о развитии агентных систем.
Агентность vs Агенты 🎯
Нг предлагает думать об агентности как о спектре функций, а не делить системы на "агентные" и "не агентные". Это помогает избежать бесполезных споров и сосредоточиться на практической разработке.
Текущее состояние рынка 📊
Большинство бизнес-процессов представляют собой:
• Линейные рабочие процессы
• Простые ветвления при ошибках
• Небольшие циклы обработки данных
Сложные агентные системы с множественными циклами пока менее распространены.
Ключевые навыки для разработчиков агентов 🛠
1️⃣ Правильная декомпозиция задач
Умение разбивать бизнес-процессы на микрозадачи остается критически важным навыком.
2️⃣ Система оценки (Evals)
Многие команды слишком долго полагаются только на ручную оценку. Автоматизированные evals нужно внедрять быстрее, даже если они изначально несовершенны.
3️⃣ Тактические знания
Опыт работы с различными инструментами (RAG, память, guardrails) как с "кубиками Lego" — чем больше инструментов знаешь, тем быстрее можешь собрать решение.
Недооцененные технологии 🔍
Голосовые приложения 🎙
Несмотря на высокий интерес крупных компаний, разработчики уделяют им недостаточно внимания. Голос снижает барьер входа для пользователей — люди говорят более свободно, чем пишут. Это действительно так: даже у меня уже сформировалась привычка ставить задачу AI-кодеру голосом.
MCP (Model Context Protocol) 🔗
Стандартизирует интеграцию агентов с различными источниками данных. Пока протокол "сырой", но это важный шаг к решению проблемы n×m интеграций.
Программирование с ИИ 💻
Нг выступает против термина "vibe coding", считая его misleading (некорректным). Это интеллектуально сложный процесс, требующий глубокого понимания технологий.
Про глубокое понимание технологий можно, конечно, поспорить.
Порог входа в AI-программирование стремительно снижается. Модели, которые "пишут" код, "умнеют" каждые пол-года. Многие задачи, которые раньше требовали написания сложного PRD (Product Requirement Document) сейчас решаются промптом в 1-2 предложения (которые можно сформулировать голосом).
Большинство даже опенсорсных систем (Cline/Roo Code) уже имеют встроенные "опросники" (Architect Mode) для новичков, которые позволяют максимально точно сформулировать задачу. Коммерческие системы тоже перед решением задачи формируют привычку расспросить новоиспеченных программистов о задаче, которые те собираются решить, предложив возможные варианты (например, claude code или cursor с настроенным соответствующим образом custom agent).
Однако, сам процесс Vibe Coding может быть утомительным, если действительно хочешь решить задачу, а не поиграться.
Важно: Всем стоит изучать программирование, так как умение точно объяснить компьютеру задачу становится ключевым навыком будущего.
Советы для стартапов 🚀
Два главных предиктора успеха:
1️⃣ Скорость выполнения
Опытные команды работают значительно быстрее, чем представляют себе новички.
2️⃣ Техническая экспертиза
Глубокое понимание технологий — самый редкий ресурс, поскольку технологии развиваются очень быстро.
Мультиагентные системы 🤝
Пока рано говорить о взаимодействии агентов от разных команд. Даже создание работающего одиночного агента остается сложной задачей.
• Ссылка на оригинальное видео беседы здесь
• Подробный транскрипт здесь
• Краткий транскрипт тут
#ai_agents #andrew_ng #artificial_intelligence #tech_trends #startup_advice
Langchain
LangChain Interrupt - The AI Agent Conference by LangChain
Catch the recordings from Interrupt - The AI Agent Conference by LangChain. Watch now for free, on-demand.