🚀 Масштабирование AI/ML-инфраструктуры в Uber: 8 лет эволюции
Компания Uber уже 8 лет активно применяет технологии машинного обучения (ML), начиная с 2016 года, когда первые сложные ML-модели внедрялись для подбора водителей, пассажиров и ценообразования. Сегодня глубокое обучение стало основой критически важных сервисов, а генеративный ИИ открывает новые горизонты.
🔹 Что изменилось за эти годы?
- Переход от rule-based моделей к нейросетям и генеративным AI-решениям.
- Развитие инфраструктуры: CPU/GPU, программные библиотеки, фреймворки распределённого обучения.
- Усовершенствование платформы Michelangelo для полного цикла работы с моделями.
💡 Цель: Гибкое масштабирование для растущих запросов ИИ и ML в реальном времени.
📌 Узнайте подробности в статье на Habr.
#AI #ML #Uber #Технологии #DataScience
Компания Uber уже 8 лет активно применяет технологии машинного обучения (ML), начиная с 2016 года, когда первые сложные ML-модели внедрялись для подбора водителей, пассажиров и ценообразования. Сегодня глубокое обучение стало основой критически важных сервисов, а генеративный ИИ открывает новые горизонты.
🔹 Что изменилось за эти годы?
- Переход от rule-based моделей к нейросетям и генеративным AI-решениям.
- Развитие инфраструктуры: CPU/GPU, программные библиотеки, фреймворки распределённого обучения.
- Усовершенствование платформы Michelangelo для полного цикла работы с моделями.
💡 Цель: Гибкое масштабирование для растущих запросов ИИ и ML в реальном времени.
📌 Узнайте подробности в статье на Habr.
#AI #ML #Uber #Технологии #DataScience