Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
47.7K subscribers
226 photos
1 video
36 files
390 links
Download Telegram
Essential Excel Functions for Data Analysts 🚀

1️⃣ Basic Functions

SUM() – Adds a range of numbers. =SUM(A1:A10)

AVERAGE() – Calculates the average. =AVERAGE(A1:A10)

MIN() / MAX() – Finds the smallest/largest value. =MIN(A1:A10)


2️⃣ Logical Functions

IF() – Conditional logic. =IF(A1>50, "Pass", "Fail")

IFS() – Multiple conditions. =IFS(A1>90, "A", A1>80, "B", TRUE, "C")

AND() / OR() – Checks multiple conditions. =AND(A1>50, B1<100)


3️⃣ Text Functions

LEFT() / RIGHT() / MID() – Extract text from a string.

=LEFT(A1, 3) (First 3 characters)

=MID(A1, 3, 2) (2 characters from the 3rd position)


LEN() – Counts characters. =LEN(A1)

TRIM() – Removes extra spaces. =TRIM(A1)

UPPER() / LOWER() / PROPER() – Changes text case.


4️⃣ Lookup Functions

VLOOKUP() – Searches for a value in a column.

=VLOOKUP(1001, A2:B10, 2, FALSE)


HLOOKUP() – Searches in a row.

XLOOKUP() – Advanced lookup replacing VLOOKUP.

=XLOOKUP(1001, A2:A10, B2:B10, "Not Found")



5️⃣ Date & Time Functions

TODAY() – Returns the current date.

NOW() – Returns the current date and time.

YEAR(), MONTH(), DAY() – Extracts parts of a date.

DATEDIF() – Calculates the difference between two dates.


6️⃣ Data Cleaning Functions

REMOVE DUPLICATES – Found in the "Data" tab.

CLEAN() – Removes non-printable characters.

SUBSTITUTE() – Replaces text within a string.

=SUBSTITUTE(A1, "old", "new")



7️⃣ Advanced Functions

INDEX() & MATCH() – More flexible alternative to VLOOKUP.

TEXTJOIN() – Joins text with a delimiter.

UNIQUE() – Returns unique values from a range.

FILTER() – Filters data dynamically.

=FILTER(A2:B10, B2:B10>50)



8️⃣ Pivot Tables & Power Query

PIVOT TABLES – Summarizes data dynamically.

GETPIVOTDATA() – Extracts data from a Pivot Table.

POWER QUERY – Automates data cleaning & transformation.


You can find Free Excel Resources here: https://t.me/excel_data

Hope it helps :)

#dataanalytics
3
Career Path for a Data Analyst

Education: Start by earning a bachelor's degree in fields like math, stats, economics, or computer science.

Skills Growth: Learn programming (Python/R), data tools (SQL/Excel), and visualization. Master data analysis basics.

Entry-Level Role: Begin as a Junior Data Analyst. Learn data cleaning, organization, and basic analysis.

Specialization: Deepen your expertise in a specific industry. Explore advanced analytics and visualization tools.

Advanced Analytics: Move up to Senior Data Analyst. Tackle complex projects and predictive modeling.

Machine Learning: Explore machine learning and data modeling techniques. Familiarize yourself with algorithms, and learn how to implement predictive and classification models.

Domain Expertise: Develop expertise in a particular industry, such as healthcare, finance, e-commerce, etc. This knowledge will enable you to provide more valuable insights from data.

Leadership Roles: As you gain experience, you can move into roles like Data Analytics Manager or Data Science Manager, where you'll oversee teams and projects.

Continuous Learning: Stay updated with the latest tools, techniques, and industry trends. Attend workshops, conferences, and online courses to keep your skills relevant.

Networking: Build a strong professional network within the data analytics community. This can open up opportunities and help you stay informed about industry developments.

Remember, your career path can be personalized based on your interests and strengths. Continuous learning and adaptability are key in the ever-evolving field of data analysis :)
6
Many people pay too much to learn Power BI, but my mission is to break down barriers. I have shared complete learning series to learn Power BI from scratch.

Here are the links to the Power BI series

Complete Power BI Topics for Data Analyst: https://t.me/sqlspecialist/588

Part-1: https://t.me/sqlspecialist/589

Part-2: https://t.me/sqlspecialist/590

Part-3: https://t.me/sqlspecialist/592

Part-4: https://t.me/sqlspecialist/595

Part-5: https://t.me/sqlspecialist/597

Part-6: https://t.me/sqlspecialist/600

Part-7: https://t.me/sqlspecialist/603

Part-8: https://t.me/sqlspecialist/604

Part-9: https://t.me/sqlspecialist/605

Part-10: https://t.me/sqlspecialist/606

Part-11: https://t.me/sqlspecialist/609

Part-12:
https://t.me/sqlspecialist/610

Part-13: https://t.me/sqlspecialist/613

Part-14: https://t.me/sqlspecialist/614

More Power BI Resources: https://t.me/PowerBI_analyst

I'll continue with learning series on Excel & Tableau. I am also planning to start with Interview Preparation Series as have already covered essential concepts of Python, SQL & Power BI in detail.

Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.

Hope it helps :)
1🔥1
Essential Skills Excel for Data Analysts 🚀

1️⃣ Data Cleaning & Transformation

Remove Duplicates – Ensure unique records.
Find & Replace – Quick data modifications.
Text Functions – TRIM, LEN, LEFT, RIGHT, MID, PROPER.
Data Validation – Restrict input values.

2️⃣ Data Analysis & Manipulation

Sorting & Filtering – Organize and extract key insights.
Conditional Formatting – Highlight trends, outliers.
Pivot Tables – Summarize large datasets efficiently.
Power Query – Automate data transformation.

3️⃣ Essential Formulas & Functions

Lookup Functions – VLOOKUP, HLOOKUP, XLOOKUP, INDEX-MATCH.
Logical Functions – IF, AND, OR, IFERROR, IFS.
Aggregation Functions – SUM, AVERAGE, MIN, MAX, COUNT, COUNTA.
Text Functions – CONCATENATE, TEXTJOIN, SUBSTITUTE.

4️⃣ Data Visualization
Charts & Graphs – Bar, Line, Pie, Scatter, Histogram.

Sparklines – Miniature charts inside cells.
Conditional Formatting – Color scales, data bars.
Dashboard Creation – Interactive and dynamic reports.

5️⃣ Advanced Excel Techniques
Array Formulas – Dynamic calculations with multiple values.
Power Pivot & DAX – Advanced data modeling.
What-If Analysis – Goal Seek, Scenario Manager.
Macros & VBA – Automate repetitive tasks.

6️⃣ Data Import & Export
CSV & TXT Files – Import and clean raw data.
Power Query – Connect to databases, web sources.
Exporting Reports – PDF, CSV, Excel formats.

Here you can find some free Excel books & useful resources: https://t.me/excel_data

Hope it helps :)

#dataanalyst
5
10 Must-Have Habits for Data Analysts 📊🧠

1️⃣ Develop strong Excel & SQL skills
2️⃣ Master data cleaning — it’s 80% of the job
3️⃣ Always validate your data sources
4️⃣ Visualize data clearly (use Power BI/Tableau)
5️⃣ Ask the right business questions
6️⃣ Stay curious — dig deeper into patterns
7️⃣ Document your analysis & assumptions
8️⃣ Communicate insights, not just numbers
9️⃣ Learn basic Python or R for automation
🔟 Keep learning: analytics is always evolving

💬 Tap ❤️ for more!
9
Roadmap to become a data analyst

1. Foundation Skills:
•Strengthen Mathematics: Focus on statistics relevant to data analysis.
•Excel Basics: Master fundamental Excel functions and formulas.

2. SQL Proficiency:
•Learn SQL Basics: Understand SELECT statements, JOINs, and filtering.
•Practice Database Queries: Work with databases to retrieve and manipulate data.

3. Excel Advanced Techniques:
•Data Cleaning in Excel: Learn to handle missing data and outliers.
•PivotTables and PivotCharts: Master these powerful tools for data summarization.

4. Data Visualization with Excel:
•Create Visualizations: Learn to build charts and graphs in Excel.
•Dashboard Creation: Understand how to design effective dashboards.

5. Power BI Introduction:
•Install and Explore Power BI: Familiarize yourself with the interface.
•Import Data: Learn to import and transform data using Power BI.

6. Power BI Data Modeling:
•Relationships: Understand and establish relationships between tables.
•DAX (Data Analysis Expressions): Learn the basics of DAX for calculations.

7. Advanced Power BI Features:
•Advanced Visualizations: Explore complex visualizations in Power BI.
•Custom Measures and Columns: Utilize DAX for customized data calculations.

8. Integration of Excel, SQL, and Power BI:
•Importing Data from SQL to Power BI: Practice connecting and importing data.
•Excel and Power BI Integration: Learn how to use Excel data in Power BI.

9. Business Intelligence Best Practices:
•Data Storytelling: Develop skills in presenting insights effectively.
•Performance Optimization: Optimize reports and dashboards for efficiency.

10. Build a Portfolio:
•Showcase Excel Projects: Highlight your data analysis skills using Excel.
•Power BI Projects: Feature Power BI dashboards and reports in your portfolio.

11. Continuous Learning and Certification:
•Stay Updated: Keep track of new features in Excel, SQL, and Power BI.
•Consider Certifications: Obtain relevant certifications to validate your skills.
1
Advanced Questions Asked by Big 4

📊 Excel Questions
1. How do you use Excel to forecast future trends based on historical data? Describe a scenario where you built a forecasting model.
2. Can you explain how you would automate repetitive tasks in Excel using VBA (Visual Basic for Applications)? Provide an example of a complex macro you created.
3. Describe a time when you had to merge and analyze data from multiple Excel workbooks. How did you ensure data integrity and accuracy?

🗄 SQL Questions
1. How would you design a database schema for a new e-commerce platform to efficiently handle large volumes of transactions and user data?
2. Describe a complex SQL query you wrote to solve a business problem. What was the problem, and how did your query help resolve it?
3. How do you ensure data integrity and consistency in a multi-user database environment? Explain the techniques and tools you use.

🐍 Python Questions
1. How would you use Python to automate data extraction from various APIs and combine the data for analysis? Provide an example.
2. Describe a machine learning project you worked on using Python. What was the objective, and how did you approach the data preprocessing, model selection, and evaluation?
3. Explain how you would use Python to detect and handle anomalies in a dataset. What techniques and libraries would you employ?

📈 Power BI Questions
1. How do you create interactive dashboards in Power BI that can dynamically update based on user inputs? Provide an example of a dashboard you built.
2. Describe a scenario where you used Power BI to integrate data from non-traditional sources (e.g., web scraping, APIs). How did you handle the data transformation and visualization?
3. How do you ensure the performance and scalability of Power BI reports when dealing with large datasets? Describe the techniques and best practices you follow.


💡 Tips for Success:
Understand the business context: Tailor your answers to show how your technical skills solve real business problems.
Provide specific examples: Highlight your past experiences with concrete examples.
Stay updated: Continuously learn and adapt to new tools and methodologies.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope it helps :)
5
Top 10 Power BI interview questions with answers:

1. What are the key components of Power BI?

Solution:

Power Query: Data transformation and preparation.

Power Pivot: Data modeling.

Power View: Data visualization.

Power BI Service: Cloud-based sharing and collaboration.

Power BI Mobile: Mobile reports and dashboards.

2. What is DAX in Power BI?

Solution:
DAX (Data Analysis Expressions) is a formula language used in Power BI to create calculated columns, measures, and tables.
Example:

TotalSales = SUM(Sales[Amount])

3. What is the difference between a calculated column and a measure?

Solution:

Calculated Column: Computed row by row in the data model.

Measure: Computed at the aggregate level based on filters in a visualization.

4. How do you connect Power BI to a database?

Solution:

1. Open Power BI Desktop.


2. Go to Home > Get Data > Database (e.g., SQL Server).


3. Enter server and database details, then load or transform data.

5. What is the role of relationships in Power BI?

Solution:
Relationships define how tables in a data model are connected. Power BI uses relationships to filter and calculate data across multiple tables.

6. What are slicers in Power BI?

Solution:
Slicers are visual filters that allow users to interactively filter data in reports.
Example: A slicer for "Region" lets users view data specific to a selected region.

7. How do you implement Row-Level Security (RLS) in Power BI?

Solution:

1. Define roles in Modeling > Manage Roles.


2. Use DAX expressions to restrict data (e.g., [Region] = "North").


3. Assign roles to users in the Power BI Service.

8. What are the different types of joins in Power BI?

Solution:
Power BI offers the following join types in Power Query:

Inner Join

Left Outer Join

Right Outer Join

Full Outer Join

Anti Join (Left/Right Exclusion)

9. What is the difference between Power BI Pro and Power BI Premium?

Solution:

Power BI Pro: Allows sharing and collaboration for individual users.

Power BI Premium: Provides dedicated resources, larger dataset sizes, and supports enterprise-level usage.

10. How can you optimize Power BI reports for performance?

Solution:

- Use summarized datasets.

- Reduce visuals on a single page.

- Optimize DAX expressions.

- Enable aggregations for large datasets.

- Use query folding in Power Query.

I have curated essential Power BI Interview Resources👇
https://t.me/DataSimplifier

Like this post if you need more Power BI Resources 👍❤️

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
1
What are the differences between a Power BI dataset, a Report, and a Dashboard?

In Power BI:

1. Dataset: It's where your raw data resides. Think of it as your data source. You import or connect to data, transform it, and then store it in a dataset within Power BI.

2. Report: Reports visualize data from your dataset. They consist of visuals like charts, graphs, tables, etc., created using the data in your dataset. Reports allow you to explore and analyze your data in depth.

3. Dashboard: Dashboards are a collection of visuals from one or more reports, designed to give a snapshot view of your data. They provide a high-level overview of key metrics and trends. You can pin visuals from different reports onto a dashboard to create a unified view.

I have curated the best interview resources to crack Power BI Interviews 👇👇
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Hope you'll like it

Like this post if you need more resources like this 👍❤️
4
9 tips to master Power BI for Data Analysis:

📥 Learn to import data from various sources

🧹 Clean and transform data using Power Query

🧠 Understand relationships between tables using the data model

🧾 Write DAX formulas for calculated columns and measures

📊 Create interactive visuals: bar charts, slicers, maps, etc.

🎯 Use filters, slicers, and drill-through for deeper insights

📈 Build dashboards that tell a clear data story

🔄 Refresh and schedule your reports automatically

📚 Explore Power BI community and documentation for new tricks

Power BI Free Resources: https://t.me/PowerBI_analyst

Hope it helps :)

#powerbi
2
𝗦𝗤𝗟 𝗠𝘂𝘀𝘁-𝗞𝗻𝗼𝘄 𝗗𝗶𝗳𝗳𝗲𝗿𝗲𝗻𝗰𝗲𝘀 📊

Whether you're writing daily queries or preparing for interviews, understanding these subtle SQL differences can make a big impact on both performance and accuracy.

🧠 Here’s a powerful visual that compares the most commonly misunderstood SQL concepts — side by side.

📌 𝗖𝗼𝘃𝗲𝗿𝗲𝗱 𝗶𝗻 𝘁𝗵𝗶𝘀 𝘀𝗻𝗮𝗽𝘀𝗵𝗼𝘁:
🔹 RANK() vs DENSE_RANK()
🔹 HAVING vs WHERE
🔹 UNION vs UNION ALL
🔹 JOIN vs UNION
🔹 CTE vs TEMP TABLE
🔹 SUBQUERY vs CTE
🔹 ISNULL vs COALESCE
🔹 DELETE vs DROP
🔹 INTERSECT vs INNER JOIN
🔹 EXCEPT vs NOT IN

React ♥️ for detailed post with examples
3👍1
Reality check on Data Analytics jobs:

⟶ Most recruiters & employers are open to different backgrounds
⟶ The "essential skills" are usually a mix of hard and soft skills

Desired hard skills:

⟶ Excel - every job needs it
⟶ SQL - data retrieval and manipulation
⟶ Data Visualization - Tableau, Power BI, or Excel (Advanced)
⟶ Python - Basics, Numpy, Pandas, Matplotlib, Seaborn, Scikit-learn, etc

Desired soft skills:

⟶ Communication
⟶ Teamwork & Collaboration
⟶ Problem Solver
⟶ Critical Thinking

If you're lacking in some of the hard skills, start learning them through online courses or engaging in personal projects.

But don't forget to highlight your soft skills in your job application - they're equally important.

In short: Excel + SQL + Data Viz + Python + Communication + Teamwork + Problem Solver + Critical Thinking = Data Analytics
3
5 Essential Skills Every Data Analyst Must Master in 2025

Data analytics continues to evolve rapidly, and as a data analyst, it's crucial to stay ahead of the curve. In 2025, the skills that were once optional are now essential to stand out in this competitive field. Here are five must-have skills for every data analyst this year.

1. Data Wrangling & Cleaning:
The ability to clean, organize, and prepare data for analysis is critical. No matter how sophisticated your tools are, they can't work with messy, inconsistent data. Mastering data wrangling—removing duplicates, handling missing values, and standardizing formats—will help you deliver accurate and actionable insights.

Tools to master: Python (Pandas), R, SQL

2. Advanced Excel Skills:
Excel remains one of the most widely used tools in the data analysis world. Beyond the basics, you should master advanced formulas, pivot tables, and Power Query. Excel continues to be indispensable for quick analyses and prototype dashboards.

Key skills to learn: VLOOKUP, INDEX/MATCH, Power Pivot, advanced charting

3. Data Visualization:
The ability to convey your findings through compelling data visuals is what sets top analysts apart. Learn how to use tools like Tableau, Power BI, or even D3.js for web-based visualization. Your visuals should tell a story that’s easy for stakeholders to understand at a glance.

Focus areas: Interactive dashboards, storytelling with data, advanced chart types (heat maps, scatter plots)

4. Statistical Analysis & Hypothesis Testing:
Understanding statistics is fundamental for any data analyst. Master concepts like regression analysis, probability theory, and hypothesis testing. This skill will help you not only describe trends but also make data-driven predictions and assess the significance of your findings.

Skills to focus on: T-tests, ANOVA, correlation, regression models

5. Machine Learning Basics:
While you don’t need to be a data scientist, having a basic understanding of machine learning algorithms is increasingly important. Knowledge of supervised vs unsupervised learning, decision trees, and clustering techniques will allow you to push your analysis to the next level.

Begin with: Linear regression, K-means clustering, decision trees (using Python libraries like Scikit-learn)

In 2025, data analysts must embrace a multi-faceted skill set that combines technical expertise, statistical knowledge, and the ability to communicate findings effectively.

Keep learning and adapting to these emerging trends to ensure you're ready for the challenges of tomorrow.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this 👍♥️

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
6
Basic SQL Commands Cheat Sheet 🗃️

⦁  SELECT — Select data from database
⦁  FROM — Specify table
⦁  WHERE — Filter query by condition
⦁  AS — Rename column or table (alias)
⦁  JOIN — Combine rows from 2+ tables
⦁  AND — Combine conditions (all must match)
⦁  OR — Combine conditions (any can match)
⦁  LIMIT — Limit number of rows returned
⦁  IN — Specify multiple values in WHERE
⦁  CASE — Conditional expressions in queries
⦁  IS NULL — Select rows with NULL values
⦁  LIKE — Search patterns in columns
⦁  COMMIT — Write transaction to DB
⦁  ROLLBACK — Undo transaction block
⦁  ALTER TABLE — Add/remove columns
⦁  UPDATE — Update data in table
⦁  CREATE — Create table, DB, indexes, views
⦁  DELETE — Delete rows from table
⦁  INSERT — Add single row to table
⦁  DROP — Delete table, DB, or index
⦁  GROUP BY — Group data into logical sets
⦁  ORDER BY — Sort result (use DESC for reverse)
⦁  HAVING — Filter groups like WHERE but for grouped data
⦁  COUNT — Count number of rows
⦁  SUM — Sum values in a column
⦁  AVG — Average value in a column
⦁  MIN — Minimum value in column
⦁  MAX — Maximum value in column

💬 Tap ❤️ for more!
9