Top 5 data science projects for freshers
1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.
2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.
3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.
4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.
5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.
Free Datsets -> https://t.me/DataPortfolio/2?single
These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.
Join @pythonspecialist for more data science projects
1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.
2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.
3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.
4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.
5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.
Free Datsets -> https://t.me/DataPortfolio/2?single
These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.
Join @pythonspecialist for more data science projects
π2
Some terms you should be familiar about
πΉ HTML (Hypertext Markup Language): The standard language used for creating the structure and content of web pages.
πΉ CSS (Cascading Style Sheets): A language used to describe the presentation and visual styling of HTML elements on a web page.
πΉ JavaScript: A programming language that adds interactivity and dynamic behavior to websites.
πΉ Responsive Web Design: Designing and building websites that adapt and look good on different devices and screen sizes, such as desktops, tablets, and mobile phones.
πΉ Front-end Development: The practice of creating the user-facing side of a website or application using HTML, CSS, and JavaScript.
πΉ Back-end Development: The development of the server-side logic and functionality that powers websites and applications.
πΉ API (Application Programming Interface): A set of rules and protocols that allow different software applications to communicate and share data with each other.
πΉ CMS (Content Management System): A software application that enables users to create, manage, and publish digital content on the web without requiring advanced technical knowledge.
πΉ Framework: A pre-built set of tools, libraries, and conventions that provide a foundation for building web applications, making development faster and more efficient.
πΉ UX (User Experience): The overall experience and satisfaction a user has while interacting with a website or application.
πΉ UI (User Interface): The visual design and layout of a website or application that users interact with.
πΉ SEO (Search Engine Optimization): The process of improving a website's visibility and ranking in search engine results to attract more organic (non-paid) traffic.
πΉ Domain Name: The unique address that identifies a website on the internet, such as www.example.com.
πΉ Hosting: The service of storing and making web pages or applications accessible on the internet.
πΉ SSL (Secure Sockets Layer): A security protocol that encrypts the data transmitted between a web server and a user's browser, ensuring secure communication.
πΉ Debugging: The process of identifying and fixing errors or issues in software code.
πΉ Version Control: The management of changes to software code, allowing developers to track revisions, collaborate, and revert to previous versions if needed.
πΉ Deployment: The process of making a website or application available for public use, typically by uploading it to a web server or hosting platform.
πΉ UX/UI Design: The process of creating visually appealing and user-friendly interfaces that provide a positive user experience.
πΉ Wireframe: A basic visual representation or blueprint that outlines the structure and layout of a web page or application before any detailed design elements are added.
πΉ HTML (Hypertext Markup Language): The standard language used for creating the structure and content of web pages.
πΉ CSS (Cascading Style Sheets): A language used to describe the presentation and visual styling of HTML elements on a web page.
πΉ JavaScript: A programming language that adds interactivity and dynamic behavior to websites.
πΉ Responsive Web Design: Designing and building websites that adapt and look good on different devices and screen sizes, such as desktops, tablets, and mobile phones.
πΉ Front-end Development: The practice of creating the user-facing side of a website or application using HTML, CSS, and JavaScript.
πΉ Back-end Development: The development of the server-side logic and functionality that powers websites and applications.
πΉ API (Application Programming Interface): A set of rules and protocols that allow different software applications to communicate and share data with each other.
πΉ CMS (Content Management System): A software application that enables users to create, manage, and publish digital content on the web without requiring advanced technical knowledge.
πΉ Framework: A pre-built set of tools, libraries, and conventions that provide a foundation for building web applications, making development faster and more efficient.
πΉ UX (User Experience): The overall experience and satisfaction a user has while interacting with a website or application.
πΉ UI (User Interface): The visual design and layout of a website or application that users interact with.
πΉ SEO (Search Engine Optimization): The process of improving a website's visibility and ranking in search engine results to attract more organic (non-paid) traffic.
πΉ Domain Name: The unique address that identifies a website on the internet, such as www.example.com.
πΉ Hosting: The service of storing and making web pages or applications accessible on the internet.
πΉ SSL (Secure Sockets Layer): A security protocol that encrypts the data transmitted between a web server and a user's browser, ensuring secure communication.
πΉ Debugging: The process of identifying and fixing errors or issues in software code.
πΉ Version Control: The management of changes to software code, allowing developers to track revisions, collaborate, and revert to previous versions if needed.
πΉ Deployment: The process of making a website or application available for public use, typically by uploading it to a web server or hosting platform.
πΉ UX/UI Design: The process of creating visually appealing and user-friendly interfaces that provide a positive user experience.
πΉ Wireframe: A basic visual representation or blueprint that outlines the structure and layout of a web page or application before any detailed design elements are added.
π4β€1
sql practice questions and answers.pdf
66.9 KB
SQL practice questions and answers ππ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
complete sql.pdf
754.9 KB
complete SQL (basic to advance) ππ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
DataStructure Notes.pdf
16.9 MB
Data Structure Handwritten Notes ππ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
javaScript handwritten notes.pdf
26.8 MB
JavaScript Handwritten Notes ππ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
Do not forget to React β€οΈ to this Message for More Content Like this
Thanks For Joining All β€οΈπ
β€11π€1
Machine Learning Interview Questions.pdf.pdf
194.7 KB
Machine Learning Interview Questions
Statistics Interview Q&A.pdf
105.5 KB
Like if you want Part-2 π
Stats Interview Q&A Part-2.pdf
124 KB
Statistics Interview Q&A Part-2
Python Science Projects.pdf_20231120_013618_0000.pdf
2.1 MB
Python Data Science Projects For Boosting Your Portfolio
β€1π1
Top 10 Python Libraries for Data Science & Machine Learning
1. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
2. Pandas: Pandas is a powerful data manipulation library that provides data structures like DataFrame and Series, which make it easy to work with structured data. It offers tools for data cleaning, reshaping, merging, and slicing data.
3. Matplotlib: Matplotlib is a plotting library for creating static, interactive, and animated visualizations in Python. It allows you to generate various types of plots, including line plots, bar charts, histograms, scatter plots, and more.
4. Scikit-learn: Scikit-learn is a machine learning library that provides simple and efficient tools for data mining and data analysis. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and model selection.
5. TensorFlow: TensorFlow is an open-source machine learning framework developed by Google. It enables you to build and train deep learning models using high-level APIs and tools for neural networks, natural language processing, computer vision, and more.
6. Keras: Keras is a high-level neural networks API that runs on top of TensorFlow, Theano, or Microsoft Cognitive Toolkit. It allows you to quickly prototype deep learning models with minimal code and easily experiment with different architectures.
7. Seaborn: Seaborn is a data visualization library based on Matplotlib that provides a high-level interface for creating attractive and informative statistical graphics. It simplifies the process of creating complex visualizations like heatmaps, violin plots, and pair plots.
8. Statsmodels: Statsmodels is a library that focuses on statistical modeling and hypothesis testing in Python. It offers a wide range of statistical models, including linear regression, logistic regression, time series analysis, and more.
9. XGBoost: XGBoost is an optimized gradient boosting library that provides an efficient implementation of the gradient boosting algorithm. It is widely used in machine learning competitions and has become a popular choice for building accurate predictive models.
10. NLTK (Natural Language Toolkit): NLTK is a library for natural language processing (NLP) that provides tools for text processing, tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and more. It is a valuable resource for working with textual data in data science projects.
Data Science Resources for Beginners
ππ
https://drive.google.com/drive/folders/1uCShXgmol-fGMqeF2hf9xA5XPKVSxeTo
Share with credits: https://t.me/datasciencefun
ENJOY LEARNING ππ
1. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
2. Pandas: Pandas is a powerful data manipulation library that provides data structures like DataFrame and Series, which make it easy to work with structured data. It offers tools for data cleaning, reshaping, merging, and slicing data.
3. Matplotlib: Matplotlib is a plotting library for creating static, interactive, and animated visualizations in Python. It allows you to generate various types of plots, including line plots, bar charts, histograms, scatter plots, and more.
4. Scikit-learn: Scikit-learn is a machine learning library that provides simple and efficient tools for data mining and data analysis. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and model selection.
5. TensorFlow: TensorFlow is an open-source machine learning framework developed by Google. It enables you to build and train deep learning models using high-level APIs and tools for neural networks, natural language processing, computer vision, and more.
6. Keras: Keras is a high-level neural networks API that runs on top of TensorFlow, Theano, or Microsoft Cognitive Toolkit. It allows you to quickly prototype deep learning models with minimal code and easily experiment with different architectures.
7. Seaborn: Seaborn is a data visualization library based on Matplotlib that provides a high-level interface for creating attractive and informative statistical graphics. It simplifies the process of creating complex visualizations like heatmaps, violin plots, and pair plots.
8. Statsmodels: Statsmodels is a library that focuses on statistical modeling and hypothesis testing in Python. It offers a wide range of statistical models, including linear regression, logistic regression, time series analysis, and more.
9. XGBoost: XGBoost is an optimized gradient boosting library that provides an efficient implementation of the gradient boosting algorithm. It is widely used in machine learning competitions and has become a popular choice for building accurate predictive models.
10. NLTK (Natural Language Toolkit): NLTK is a library for natural language processing (NLP) that provides tools for text processing, tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and more. It is a valuable resource for working with textual data in data science projects.
Data Science Resources for Beginners
ππ
https://drive.google.com/drive/folders/1uCShXgmol-fGMqeF2hf9xA5XPKVSxeTo
Share with credits: https://t.me/datasciencefun
ENJOY LEARNING ππ
β€1
Guys, Big Announcement!
Weβve officially hit 2 MILLION followers β and itβs time to take our Python journey to the next level!
Iβm super excited to launch the 30-Day Python Coding Challenge β perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python β bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Hereβs what youβll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile script)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic β Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs β Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract titles from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer script)
- Final Project (Choose, build, and polish your app!)
React with β€οΈ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
Weβve officially hit 2 MILLION followers β and itβs time to take our Python journey to the next level!
Iβm super excited to launch the 30-Day Python Coding Challenge β perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python β bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Hereβs what youβll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile script)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic β Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs β Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract titles from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer script)
- Final Project (Choose, build, and polish your app!)
React with β€οΈ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
β€4
DSA INTERVIEW QUESTIONS AND ANSWERS
1. What is the difference between file structure and storage structure?
The difference lies in the memory area accessed. Storage structure refers to the data structure in the memory of the computer system,
whereas file structure represents the storage structure in the auxiliary memory.
2. Are linked lists considered linear or non-linear Data Structures?
Linked lists are considered both linear and non-linear data structures depending upon the application they are used for. When used for
access strategies, it is considered as a linear data-structure. When used for data storage, it is considered a non-linear data structure.
3. How do you reference all of the elements in a one-dimension array?
All of the elements in a one-dimension array can be referenced using an indexed loop as the array subscript so that the counter runs
from 0 to the array size minus one.
4. What are dynamic Data Structures? Name a few.
They are collections of data in memory that expand and contract to grow or shrink in size as a program runs. This enables the programmer
to control exactly how much memory is to be utilized.Examples are the dynamic array, linked list, stack, queue, and heap.
5. What is a Dequeue?
It is a double-ended queue, or a data structure, where the elements can be inserted or deleted at both ends (FRONT and REAR).
6. What operations can be performed on queues?
enqueue() adds an element to the end of the queue
dequeue() removes an element from the front of the queue
init() is used for initializing the queue
isEmpty tests for whether or not the queue is empty
The front is used to get the value of the first data item but does not remove it
The rear is used to get the last item from a queue.
7. What is the merge sort? How does it work?
Merge sort is a divide-and-conquer algorithm for sorting the data. It works by merging and sorting adjacent data to create bigger sorted
lists, which are then merged recursively to form even bigger sorted lists until you have one single sorted list.
8.How does the Selection sort work?
Selection sort works by repeatedly picking the smallest number in ascending order from the list and placing it at the beginning. This process is repeated moving toward the end of the list or sorted subarray.
Scan all items and find the smallest. Switch over the position as the first item. Repeat the selection sort on the remaining N-1 items. We always iterate forward (i from 0 to N-1) and swap with the smallest element (always i).
Time complexity: best case O(n2); worst O(n2)
Space complexity: worst O(1)
9. What are the applications of graph Data Structure?
Transport grids where stations are represented as vertices and routes as the edges of the graph
Utility graphs of power or water, where vertices are connection points and edge the wires or pipes connecting them
Social network graphs to determine the flow of information and hotspots (edges and vertices)
Neural networks where vertices represent neurons and edge the synapses between them
10. What is an AVL tree?
An AVL (Adelson, Velskii, and Landi) tree is a height balancing binary search tree in which the difference of heights of the left
and right subtrees of any node is less than or equal to one. This controls the height of the binary search tree by not letting
it get skewed. This is used when working with a large data set, with continual pruning through insertion and deletion of data.
11. Differentiate NULL and VOID ?
Null is a value, whereas Void is a data type identifier
Null indicates an empty value for a variable, whereas void indicates pointers that have no initial size
Null means it never existed; Void means it existed but is not in effect
You can check these resources for Coding interview Preparation
Credits: https://t.me/free4unow_backup
All the best ππ
1. What is the difference between file structure and storage structure?
The difference lies in the memory area accessed. Storage structure refers to the data structure in the memory of the computer system,
whereas file structure represents the storage structure in the auxiliary memory.
2. Are linked lists considered linear or non-linear Data Structures?
Linked lists are considered both linear and non-linear data structures depending upon the application they are used for. When used for
access strategies, it is considered as a linear data-structure. When used for data storage, it is considered a non-linear data structure.
3. How do you reference all of the elements in a one-dimension array?
All of the elements in a one-dimension array can be referenced using an indexed loop as the array subscript so that the counter runs
from 0 to the array size minus one.
4. What are dynamic Data Structures? Name a few.
They are collections of data in memory that expand and contract to grow or shrink in size as a program runs. This enables the programmer
to control exactly how much memory is to be utilized.Examples are the dynamic array, linked list, stack, queue, and heap.
5. What is a Dequeue?
It is a double-ended queue, or a data structure, where the elements can be inserted or deleted at both ends (FRONT and REAR).
6. What operations can be performed on queues?
enqueue() adds an element to the end of the queue
dequeue() removes an element from the front of the queue
init() is used for initializing the queue
isEmpty tests for whether or not the queue is empty
The front is used to get the value of the first data item but does not remove it
The rear is used to get the last item from a queue.
7. What is the merge sort? How does it work?
Merge sort is a divide-and-conquer algorithm for sorting the data. It works by merging and sorting adjacent data to create bigger sorted
lists, which are then merged recursively to form even bigger sorted lists until you have one single sorted list.
8.How does the Selection sort work?
Selection sort works by repeatedly picking the smallest number in ascending order from the list and placing it at the beginning. This process is repeated moving toward the end of the list or sorted subarray.
Scan all items and find the smallest. Switch over the position as the first item. Repeat the selection sort on the remaining N-1 items. We always iterate forward (i from 0 to N-1) and swap with the smallest element (always i).
Time complexity: best case O(n2); worst O(n2)
Space complexity: worst O(1)
9. What are the applications of graph Data Structure?
Transport grids where stations are represented as vertices and routes as the edges of the graph
Utility graphs of power or water, where vertices are connection points and edge the wires or pipes connecting them
Social network graphs to determine the flow of information and hotspots (edges and vertices)
Neural networks where vertices represent neurons and edge the synapses between them
10. What is an AVL tree?
An AVL (Adelson, Velskii, and Landi) tree is a height balancing binary search tree in which the difference of heights of the left
and right subtrees of any node is less than or equal to one. This controls the height of the binary search tree by not letting
it get skewed. This is used when working with a large data set, with continual pruning through insertion and deletion of data.
11. Differentiate NULL and VOID ?
Null is a value, whereas Void is a data type identifier
Null indicates an empty value for a variable, whereas void indicates pointers that have no initial size
Null means it never existed; Void means it existed but is not in effect
You can check these resources for Coding interview Preparation
Credits: https://t.me/free4unow_backup
All the best ππ
π2
The most popular programming languages:
1. Python
2. TypeScript
3. JavaScript
4. C#
5. HTML
6. Rust
7. C++
8. C
9. Go
10. Lua
11. Kotlin
12. Java
13. Swift
14. Jupyter Notebook
15. Shell
16. CSS
17. GDScript
18. Solidity
19. Vue
20. PHP
21. Dart
22. Ruby
23. Objective-C
24. PowerShell
25. Scala
According to the Latest GitHub Repositories
1. Python
2. TypeScript
3. JavaScript
4. C#
5. HTML
6. Rust
7. C++
8. C
9. Go
10. Lua
11. Kotlin
12. Java
13. Swift
14. Jupyter Notebook
15. Shell
16. CSS
17. GDScript
18. Solidity
19. Vue
20. PHP
21. Dart
22. Ruby
23. Objective-C
24. PowerShell
25. Scala
According to the Latest GitHub Repositories
π7β€1
β MAHINDRA Interview Experience β
Technical Round:
1) Explain the working of your projects.
2) What are your favourite subjects?
3) Discuss about improving engine
efficiency and fuel economy.
4) What are the CNG driven cars' future in
India?
5) What is an in-car technology?
HR Round:
1) Tell me about yourself?
2) Why do you want to join our company?
3) What are your weakness and strong
points?
4) Can you tell us any instance of your
life when you worked as a leader?
5) Why should we hire you? Etc.
Technical Round:
1) Explain the working of your projects.
2) What are your favourite subjects?
3) Discuss about improving engine
efficiency and fuel economy.
4) What are the CNG driven cars' future in
India?
5) What is an in-car technology?
HR Round:
1) Tell me about yourself?
2) Why do you want to join our company?
3) What are your weakness and strong
points?
4) Can you tell us any instance of your
life when you worked as a leader?
5) Why should we hire you? Etc.
β€2