Coding Free Books & Resources
31.7K subscribers
269 photos
526 files
254 links
๐Ÿ“šGet daily updates for :

โœ… Free resources
โœ… All Free notes
โœ… Internship,Jobs
and a lot more....๐Ÿ˜

๐Ÿ“Join & Share this channel with your friends and college mates โค๏ธ

Managed by: @love_data
Download Telegram
๐—–๐—œ๐—ฆ๐—–๐—ข ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

- Data Analytics
- Data Science 
- Python
- Javascript
- Cybersecurity
 
๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified๐ŸŽ“
โค3
๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ญ ๐ฏ๐ฌ. ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐ญ๐ข๐ฌ๐ญ โ€“ ๐–๐ก๐š๐ญโ€™๐ฌ ๐ญ๐ก๐ž ๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž?

Whether you're starting a career in data or looking to pivot, itโ€™s crucial to understand the key differences between a Data Analyst and a Data Scientist:

๐Ÿ‘“ ๐…๐จ๐œ๐ฎ๐ฌ

Data Analyst: Interprets existing data to uncover insights.

Data Scientist: Predicts future trends using advanced models.

๐Ÿ› ๏ธ ๐“๐จ๐จ๐ฅ๐ฌ ๐”๐ฌ๐ž๐

Data Analyst: Excel, SQL, Tableau

Data Scientist: Python, R, Machine Learning tools

๐Ÿ’ผ ๐“๐ฒ๐ฉ๐ž ๐จ๐Ÿ ๐–๐จ๐ซ๐ค

Data Analyst: Reporting and dashboarding

Data Scientist: Building models and algorithms

๐Ÿง  ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ๐ž๐ญ

Data Analyst: Data cleaning, visualization

Data Scientist: Data-driven product development and strategy

Both roles are essentialโ€”but they serve different purposes. One tells you what happened, the other helps you decide what to do next.
โค1
Forwarded from Artificial Intelligence
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ,๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ,๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ & ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ๐Ÿ˜

Roadmap:- https://pdlink.in/41c1Kei

Certifications:- https://pdlink.in/3Fq7E4p

Projects:- https://pdlink.in/3ZkXetO

Interview Q/A :- https://pdlink.in/4jLOJ2a

Enroll For FREE & Become a Certified Data Analyst In 2025๐ŸŽ“
โค3
Launch Your Career in Data Analytics, Data Science & AI ๐Ÿš€
Learn Live from Top Data Experts at Leading Tech Companies!

Master in-demand skills and land your dream job in Data Science, Analytics, or AI with expert-led live training.

Eligibility: BTech / BCA / BSc / BBA / BA / BCom

๐Ÿ”น 2000+ Students Placed
๐Ÿ”น 500+ Hiring Partners
๐Ÿ”น โ‚น7.4 LPA Average Package
๐Ÿ”น โ‚น41 LPA Highest Package

Limited Seats โ€“ Secure Yours Now๐Ÿ‘‡
๐Ÿ‘‰ https://go.acciojob.com/RYFvdU
โค2
๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—”๐—ฝ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ๐—ฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐Ÿ˜

Whether youโ€™re interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, thereโ€™s something here for everyone.

โœ… 100% Free Courses
โœ… Govt. Incentives on Completion
โœ… Self-paced Learning
โœ… Certificates to Showcase on LinkedIn & Resume
โœ… Mock Assessments to Test Your Skills

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/447coEk

Enroll for FREE & Get Certified ๐ŸŽ“
โค1
Master Javascript :

The JavaScript Tree ๐Ÿ‘‡
|
|โ”€โ”€ Variables
| โ”œโ”€โ”€ var
| โ”œโ”€โ”€ let
| โ””โ”€โ”€ const
|
|โ”€โ”€ Data Types
| โ”œโ”€โ”€ String
| โ”œโ”€โ”€ Number
| โ”œโ”€โ”€ Boolean
| โ”œโ”€โ”€ Object
| โ”œโ”€โ”€ Array
| โ”œโ”€โ”€ Null
| โ””โ”€โ”€ Undefined
|
|โ”€โ”€ Operators
| โ”œโ”€โ”€ Arithmetic
| โ”œโ”€โ”€ Assignment
| โ”œโ”€โ”€ Comparison
| โ”œโ”€โ”€ Logical
| โ”œโ”€โ”€ Unary
| โ””โ”€โ”€ Ternary (Conditional)
||โ”€โ”€ Control Flow
| โ”œโ”€โ”€ if statement
| โ”œโ”€โ”€ else statement
| โ”œโ”€โ”€ else if statement
| โ”œโ”€โ”€ switch statement
| โ”œโ”€โ”€ for loop
| โ”œโ”€โ”€ while loop
| โ””โ”€โ”€ do-while loop
|
|โ”€โ”€ Functions
| โ”œโ”€โ”€ Function declaration
| โ”œโ”€โ”€ Function expression
| โ”œโ”€โ”€ Arrow function
| โ””โ”€โ”€ IIFE (Immediately Invoked Function Expression)
|
|โ”€โ”€ Scope
| โ”œโ”€โ”€ Global scope
| โ”œโ”€โ”€ Local scope
| โ”œโ”€โ”€ Block scope
| โ””โ”€โ”€ Lexical scope
||โ”€โ”€ Arrays
| โ”œโ”€โ”€ Array methods
| | โ”œโ”€โ”€ push()
| | โ”œโ”€โ”€ pop()
| | โ”œโ”€โ”€ shift()
| | โ”œโ”€โ”€ unshift()
| | โ”œโ”€โ”€ splice()
| | โ”œโ”€โ”€ slice()
| | โ””โ”€โ”€ concat()
| โ””โ”€โ”€ Array iteration
| โ”œโ”€โ”€ forEach()
| โ”œโ”€โ”€ map()
| โ”œโ”€โ”€ filter()
| โ””โ”€โ”€ reduce()|
|โ”€โ”€ Objects
| โ”œโ”€โ”€ Object properties
| | โ”œโ”€โ”€ Dot notation
| | โ””โ”€โ”€ Bracket notation
| โ”œโ”€โ”€ Object methods
| | โ”œโ”€โ”€ Object.keys()
| | โ”œโ”€โ”€ Object.values()
| | โ””โ”€โ”€ Object.entries()
| โ””โ”€โ”€ Object destructuring
||โ”€โ”€ Promises
| โ”œโ”€โ”€ Promise states
| | โ”œโ”€โ”€ Pending
| | โ”œโ”€โ”€ Fulfilled
| | โ””โ”€โ”€ Rejected
| โ”œโ”€โ”€ Promise methods
| | โ”œโ”€โ”€ then()
| | โ”œโ”€โ”€ catch()
| | โ””โ”€โ”€ finally()
| โ””โ”€โ”€ Promise.all()
|
|โ”€โ”€ Asynchronous JavaScript
| โ”œโ”€โ”€ Callbacks
| โ”œโ”€โ”€ Promises
| โ””โ”€โ”€ Async/Await
|
|โ”€โ”€ Error Handling
| โ”œโ”€โ”€ try...catch statement
| โ””โ”€โ”€ throw statement
|
|โ”€โ”€ JSON (JavaScript Object Notation)
||โ”€โ”€ Modules
| โ”œโ”€โ”€ import
| โ””โ”€โ”€ export
|
|โ”€โ”€ DOM Manipulation
| โ”œโ”€โ”€ Selecting elements
| โ”œโ”€โ”€ Modifying elements
| โ””โ”€โ”€ Creating elements
|
|โ”€โ”€ Events
| โ”œโ”€โ”€ Event listeners
| โ”œโ”€โ”€ Event propagation
| โ””โ”€โ”€ Event delegation
|
|โ”€โ”€ AJAX (Asynchronous JavaScript and XML)
|
|โ”€โ”€ Fetch API
||โ”€โ”€ ES6+ Features
| โ”œโ”€โ”€ Template literals
| โ”œโ”€โ”€ Destructuring assignment
| โ”œโ”€โ”€ Spread/rest operator
| โ”œโ”€โ”€ Arrow functions
| โ”œโ”€โ”€ Classes
| โ”œโ”€โ”€ let and const
| โ”œโ”€โ”€ Default parameters
| โ”œโ”€โ”€ Modules
| โ””โ”€โ”€ Promises
|
|โ”€โ”€ Web APIs
| โ”œโ”€โ”€ Local Storage
| โ”œโ”€โ”€ Session Storage
| โ””โ”€โ”€ Web Storage API
|
|โ”€โ”€ Libraries and Frameworks
| โ”œโ”€โ”€ React
| โ”œโ”€โ”€ Angular
| โ””โ”€โ”€ Vue.js
||โ”€โ”€ Debugging
| โ”œโ”€โ”€ Console.log()
| โ”œโ”€โ”€ Breakpoints
| โ””โ”€โ”€ DevTools
|
|โ”€โ”€ Others
| โ”œโ”€โ”€ Closures
| โ”œโ”€โ”€ Callbacks
| โ”œโ”€โ”€ Prototypes
| โ”œโ”€โ”€ this keyword
| โ”œโ”€โ”€ Hoisting
| โ””โ”€โ”€ Strict mode
|
| END __
โค4
๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ & ๐—Ÿ๐—ฒ๐—ฎ๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Harward :- https://pdlink.in/4kmYOn1

MIT :- https://pdlink.in/45cvR95

HP :- https://pdlink.in/45ci02k

Google :- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/441GCKF

Standford :- https://pdlink.in/3ThPwNw

IIM :- https://pdlink.in/4nfXDrV

Enroll for FREE & Get Certified ๐ŸŽ“
Important questions to ace your machine learning interview with an approach to answer:

1. Machine Learning Project Lifecycle:
   - Define the problem
   - Gather and preprocess data
   - Choose a model and train it
   - Evaluate model performance
   - Tune and optimize the model
   - Deploy and maintain the model

2. Supervised vs Unsupervised Learning:
   - Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
   - Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).

3. Evaluation Metrics for Regression:
   - Mean Absolute Error (MAE)
   - Mean Squared Error (MSE)
   - Root Mean Squared Error (RMSE)
   - R-squared (coefficient of determination)

4. Overfitting and Prevention:
   - Overfitting: Model learns the noise instead of the underlying pattern.
   - Prevention: Use simpler models, cross-validation, regularization.

5. Bias-Variance Tradeoff:
   - Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.

6. Cross-Validation:
   - Technique to assess model performance by splitting data into multiple subsets for training and validation.

7. Feature Selection Techniques:
   - Filter methods (e.g., correlation analysis)
   - Wrapper methods (e.g., recursive feature elimination)
   - Embedded methods (e.g., Lasso regularization)

8. Assumptions of Linear Regression:
   - Linearity
   - Independence of errors
   - Homoscedasticity (constant variance)
   - No multicollinearity

9. Regularization in Linear Models:
   - Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.

10. Classification vs Regression:
    - Classification: Predicts a categorical outcome (e.g., class labels).
    - Regression: Predicts a continuous numerical outcome (e.g., house price).

11. Dimensionality Reduction Algorithms:
    - Principal Component Analysis (PCA)
    - t-Distributed Stochastic Neighbor Embedding (t-SNE)

12. Decision Tree:
    - Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.

13. Ensemble Methods:
    - Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).

14. Handling Missing or Corrupted Data:
    - Imputation (e.g., mean substitution)
    - Removing rows or columns with missing data
    - Using algorithms robust to missing values

15. Kernels in Support Vector Machines (SVM):
    - Linear kernel
    - Polynomial kernel
    - Radial Basis Function (RBF) kernel

Data Science Interview Resources
๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/coding/914624

Like for more ๐Ÿ˜„
โค2
๐Œ๐ข๐œ๐ซ๐จ๐ฌ๐จ๐Ÿ๐ญ ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ!๐Ÿš€๐Ÿ’ป

Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!

๐„๐ง๐ซ๐จ๐ฅ๐ฅ ๐…๐จ๐ซ ๐…๐‘๐„๐„๐Ÿ‘‡ :-

https://bit.ly/3Vlixcq

- Earn certifications to showcase your skills

Donโ€™t waitโ€”start your journey to success today! โœจ
โค4
Tips for solving leetcode codings interview problems

If input array is sorted then
- Binary search
- Two pointers

If asked for all permutations/subsets then
- Backtracking

If given a tree then
- DFS
- BFS

If given a graph then
- DFS
- BFS

If given a linked list then
- Two pointers

If recursion is banned then
- Stack

If must solve in-place then
- Swap corresponding values
- Store one or more different values in the same pointer

If asked for maximum/minimum subarray/subset/options then
- Dynamic programming

If asked for top/least K items then
- Heap

If asked for common strings then
- Map
- Trie

Else
- Map/Set for O(1) time & O(n) space
- Sort input for O(nlogn) time and O(1) space
โค3
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—”๐—œ & ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€๐Ÿ˜

Want to explore AI & Machine Learning but donโ€™t know where to start โ€” or donโ€™t want to spend โ‚นโ‚นโ‚น on it?๐Ÿ‘จโ€๐Ÿ’ป

Learn the foundations of AI, machine learning basics, data handling, and real-world use cases in just a few hours.๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/401SWry

This 100% FREE course is designed just for beginners โ€” whether youโ€™re a student, fresher, or career switcherโœ…๏ธ
โค1
โค2
๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ? ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—ฏ๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜๐—ผ ๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—ฃ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜-๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€!๐Ÿ˜

Landing your dream tech job takes more than just writing code โ€” it requires structured preparation across key areas๐Ÿ‘จโ€๐Ÿ’ป

This roadmap will guide you from zero to offer letter! ๐Ÿ’ผ๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GdfTS2

This plan works if you stay consistent๐Ÿ’ชโœ…๏ธ
โค1
Hey guys,

Today, letโ€™s talk about some of the Python questions you might face during a data analyst interview. Below, Iโ€™ve compiled the most commonly asked Python questions you should be prepared for in your interviews.

1. Why is Python used in data analysis?

Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.

2. What are the essential libraries used for data analysis in Python?

Some key libraries youโ€™ll use frequently are:

- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.

3. What is a Python dictionary, and how is it used in data analysis?

A dictionary in Python is an unordered collection of key-value pairs. Itโ€™s extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.

Example:
sales = {"January": 12000, "February": 15000, "March": 17000}
print(sales["February"]) # Output: 15000


4. Explain the difference between a list and a tuple in Python.

- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโ€™s written in square brackets [ ].

Example:

  my_list = [10, 20, 30]
my_list.append(40)


- Tuple: Immutable, meaning once defined, you cannot modify it. Itโ€™s written in parentheses ( ).

Example:

  my_tuple = (10, 20, 30)

5. How would you handle missing data in a dataset using Python?

Handling missing data is critical in data analysis, and Pythonโ€™s Pandas library makes it easy. Here are some common methods:

- Drop missing data:

  df.dropna()

- Fill missing data with a specific value:

  df.fillna(0)

- Forward-fill or backfill missing values:

  df.fillna(method='ffill')  # Forward-fill
df.fillna(method='bfill') # Backfill

6. How do you merge/join two datasets in Python?

- pd.merge(): For SQL-style joins (inner, outer, left, right).

  df_merged = pd.merge(df1, df2, on='common_column', how='inner')

- pd.concat(): For concatenating along rows or columns.

  df_concat = pd.concat([df1, df2], axis=1)

7. What is the purpose of lambda functions in Python?

A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.

Example:
add = lambda x, y: x + y
print(add(10, 20))  # Output: 30

Lambdas are often used in data analysis for quick transformations or filtering operations within functions like map() or filter().

If youโ€™re preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://t.me/DataSimplifier

Like for more resources like this ๐Ÿ‘ โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
โค3
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ ๐—ง๐—ต๐—ฎ๐˜ ๐—š๐—ฒ๐˜๐˜€ ๐—ฌ๐—ผ๐˜‚ ๐—›๐—ถ๐—ฟ๐—ฒ๐—ฑ?๐Ÿ˜

If youโ€™re just starting out in data analytics and wondering how to stand out โ€” real-world projects are the key๐Ÿ“Š

No recruiter is impressed by โ€œjust theory.โ€ What they want to see? Actionable proof of your skills๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ezeIc9

Show recruiters that you donโ€™t just โ€œknowโ€ tools โ€” you use them to solve problemsโœ…๏ธ
โค1
๐Ÿ”ฐ TypeScript Roadmap for Beginners 2025
โ”œโ”€โ”€ ๐Ÿง  Why TypeScript? JavaScript with Superpowers
โ”œโ”€โ”€ โš™๏ธ Setting up TypeScript (tsc, tsconfig)
โ”œโ”€โ”€ ๐Ÿ”ก Type Annotations (number, string, boolean, etc.)
โ”œโ”€โ”€ ๐Ÿ“ฆ Interfaces & Type Aliases
โ”œโ”€โ”€ ๐Ÿงฑ Classes, Inheritance & Access Modifiers
โ”œโ”€โ”€ ๐Ÿ” Generics
โ”œโ”€โ”€ โŒ Type Narrowing & Type Guards
โ”œโ”€โ”€ ๐Ÿ”„ Enums, Tuples & Union Types
โ”œโ”€โ”€ ๐Ÿงฉ Modules & Namespaces
โ”œโ”€โ”€ ๐Ÿ”ง Working with TypeScript & React/Vue
โ”œโ”€โ”€ ๐Ÿงช TypeScript Projects:
โ”‚ โ”œโ”€โ”€ Form Validation App
โ”‚ โ”œโ”€โ”€ API Data Viewer with TS + Fetch
โ”‚ โ”œโ”€โ”€ Typed To-do App

Free Resources: https://whatsapp.com/channel/0029Vax4TBY9Bb62pAS3mX32
โค1
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ โ€” ๐——๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜๐—น๐˜† ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ?๐Ÿ˜

Whether youโ€™re a student, job seeker, or just hungry to upskill โ€” these 5 beginner-friendly courses are your golden ticket๐ŸŽŸ๏ธ

No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vL6br

Enjoy Learning โœ…๏ธ
โค2
๐Ÿง  Technologies for Data Science, Machine Learning & AI!

๐Ÿ“Š Data Science
โ–ช๏ธ Python โ€“ The go-to language for Data Science
โ–ช๏ธ R โ€“ Statistical Computing and Graphics
โ–ช๏ธ Pandas โ€“ Data Manipulation & Analysis
โ–ช๏ธ NumPy โ€“ Numerical Computing
โ–ช๏ธ Matplotlib / Seaborn โ€“ Data Visualization
โ–ช๏ธ Jupyter Notebooks โ€“ Interactive Development Environment

๐Ÿค– Machine Learning
โ–ช๏ธ Scikit-learn โ€“ Classical ML Algorithms
โ–ช๏ธ TensorFlow โ€“ Deep Learning Framework
โ–ช๏ธ Keras โ€“ High-Level Neural Networks API
โ–ช๏ธ PyTorch โ€“ Deep Learning with Dynamic Computation
โ–ช๏ธ XGBoost โ€“ High-Performance Gradient Boosting
โ–ช๏ธ LightGBM โ€“ Fast, Distributed Gradient Boosting

๐Ÿง  Artificial Intelligence
โ–ช๏ธ OpenAI GPT โ€“ Natural Language Processing
โ–ช๏ธ Transformers (Hugging Face) โ€“ Pretrained Models for NLP
โ–ช๏ธ spaCy โ€“ Industrial-Strength NLP
โ–ช๏ธ NLTK โ€“ Natural Language Toolkit
โ–ช๏ธ Computer Vision (OpenCV) โ€“ Image Processing & Object Detection
โ–ช๏ธ YOLO (You Only Look Once) โ€“ Real-Time Object Detection

๐Ÿ’พ Data Storage & Databases
โ–ช๏ธ SQL โ€“ Structured Query Language for Databases
โ–ช๏ธ MongoDB โ€“ NoSQL, Flexible Data Storage
โ–ช๏ธ BigQuery โ€“ Googleโ€™s Data Warehouse for Large Scale Data
โ–ช๏ธ Apache Hadoop โ€“ Distributed Storage and Processing
โ–ช๏ธ Apache Spark โ€“ Big Data Processing & ML

๐ŸŒ Data Engineering & Deployment
โ–ช๏ธ Apache Airflow โ€“ Workflow Automation & Scheduling
โ–ช๏ธ Docker โ€“ Containerization for ML Models
โ–ช๏ธ Kubernetes โ€“ Container Orchestration
โ–ช๏ธ AWS Sagemaker / Google AI Platform โ€“ Cloud ML Model Deployment
โ–ช๏ธ Flask / FastAPI โ€“ APIs for ML Models

๐Ÿ”ง Tools & Libraries for Automation & Experimentation
โ–ช๏ธ MLflow โ€“ Tracking ML Experiments
โ–ช๏ธ TensorBoard โ€“ Visualization for TensorFlow Models
โ–ช๏ธ DVC (Data Version Control) โ€“ Versioning for Data & Models

React โค๏ธ for more
โค2
๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐—๐˜‚๐˜€๐˜ ๐—ฅ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฌ๐—ผ๐˜‚ ๐—–๐—ฎ๐—ปโ€™๐˜ ๐— ๐—ถ๐˜€๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ!๐Ÿ˜

๐Ÿšจ Harvard just dropped 5 FREE online tech courses โ€” no fees, no catches!๐Ÿ“Œ

Whether youโ€™re just starting out or upskilling for a tech career, this is your chance to learn from one of the worldโ€™s top universities โ€” for FREE. ๐ŸŒ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4eA368I

๐Ÿ’กLearn at your own pace, earn certificates, and boost your resumeโœ…๏ธ
โค1
Here is an A-Z list of essential programming terms:

1. Array: A data structure that stores a collection of elements of the same type in contiguous memory locations.

2. Boolean: A data type that represents true or false values.

3. Conditional Statement: A statement that executes different code based on a condition.

4. Debugging: The process of identifying and fixing errors or bugs in a program.

5. Exception: An event that occurs during the execution of a program that disrupts the normal flow of instructions.

6. Function: A block of code that performs a specific task and can be called multiple times in a program.

7. GUI (Graphical User Interface): A visual way for users to interact with a computer program using graphical elements like windows, buttons, and menus.

8. HTML (Hypertext Markup Language): The standard markup language used to create web pages.

9. Integer: A data type that represents whole numbers without any fractional part.

10. JSON (JavaScript Object Notation): A lightweight data interchange format commonly used for transmitting data between a server and a web application.

11. Loop: A programming construct that allows repeating a block of code multiple times.

12. Method: A function that is associated with an object in object-oriented programming.

13. Null: A special value that represents the absence of a value.

14. Object-Oriented Programming (OOP): A programming paradigm based on the concept of "objects" that encapsulate data and behavior.

15. Pointer: A variable that stores the memory address of another variable.

16. Queue: A data structure that follows the First-In-First-Out (FIFO) principle.

17. Recursion: A programming technique where a function calls itself to solve a problem.

18. String: A data type that represents a sequence of characters.

19. Tuple: An ordered collection of elements, similar to an array but immutable.

20. Variable: A named storage location in memory that holds a value.

21. While Loop: A loop that repeatedly executes a block of code as long as a specified condition is true.

Best Programming Resources: https://topmate.io/coding/898340

Join for more: https://t.me/programming_guide

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2