Coding Free Books & Resources
32.9K subscribers
228 photos
538 files
167 links
๐Ÿ“šGet daily updates for :

โœ… Free resources
โœ… All Free notes
โœ… Internship,Jobs
and a lot more....๐Ÿ˜

๐Ÿ“Join & Share this channel with your friends and college mates โค๏ธ

Managed by: @love_data
Download Telegram
๐Ÿ”…SQL Revision Notes for Interview๐Ÿ’ก
โค6
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

Ready to Upgrade Your Skills for a Data-Driven Career in 2025?๐Ÿ“

Whether youโ€™re a student, a fresher, or someone switching to tech, these free beginner-friendly courses will help you get started in data analysis, machine learning, Python, and more๐Ÿ‘จโ€๐Ÿ’ป๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4mwOACf

Best For: Beginners ready to dive into real machine learningโœ…๏ธ
โค2
ML Algorithms ๐Ÿ’ช
โค4
NLP techniques every Data Science professional should know!

1. Tokenization
2. Stop words removal
3. Stemming and Lemmatization
4. Named Entity Recognition
5. TF-IDF
6. Bag of Words
โค1
๐Ÿฏ ๐—ข๐—ฝ๐—ฒ๐—ป-๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐—”๐—œ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

If youโ€™ve ever thought, โ€œCan I actually build something useful with AI?โ€ โ€” the answer is yes, and you donโ€™t need to be a genius to start.โœจ๏ธ๐Ÿ“Š

These 3 open-source projects on GitHub are proof of what you can build with just basic coding knowledge and a passion for learning.๐Ÿง‘โ€๐Ÿ’ป๐Ÿ’ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45jKiXe

Build your own AI agent that remembers conversations and gets smarter over time.โœ…๏ธ
โค2
Forwarded from Artificial Intelligence
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฏ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐— ๐—ผ๐—ฑ๐˜‚๐—น๐—ฒ๐˜€!๐Ÿ˜

Start Mastering Azure Machine Learning โ€” 100% Free!๐Ÿ’ฅ

Want to get into AI and Machine Learning using Azure but donโ€™t know where to begin?๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45oT5r0

These official Microsoft Learn modules are all you need โ€” hands-on, beginner-friendly, and backed with certificates๐Ÿง‘โ€๐ŸŽ“๐Ÿ“œ
โค1
Key trends shaping the future of web development ๐Ÿ‘‡๐Ÿ‘‡

1. Progressive Web Apps (PWAs): PWAs are becoming more popular as they combine the best of web and mobile apps, offering a seamless experience across platforms without needing app stores.

2. WebAssembly (Wasm): WebAssembly allows developers to run code written in different languages (C++, Rust) on the web with near-native performance, enhancing web application speed and capabilities.

3. AI-Powered Web Development: Artificial Intelligence (AI) and Machine Learning (ML) will become more integrated into web development, enabling features like chatbots, personalized content, predictive search, and automated design processes.

4. Voice Search Optimization: As voice search continues to grow, web developers will focus on optimizing websites for voice-activated queries, leading to changes in search engine optimization (SEO) practices and user experience design.

5. Serverless Architecture: Serverless computing allows developers to build and deploy applications without managing infrastructure. This reduces costs, enhances scalability, and enables faster development cycles.

6. Motion UI: Animation and micro-interactions will play a bigger role in web design. Motion UI helps create engaging, interactive experiences that can improve user engagement and satisfaction.

7. 5G and Enhanced Connectivity: With the rollout of 5G, faster internet speeds and lower latency will enable more complex, real-time applications, especially in areas like augmented reality (AR), virtual reality (VR), and IoT.

8. Blockchain Integration: Web development could integrate blockchain technology for decentralized applications (dApps), offering enhanced security, transparency, and user control over data.

9. Edge Computing: By bringing computing closer to the source of data, edge computing will reduce latency and improve the performance of web applications, especially for IoT and real-time data processing.

10. Cybersecurity Focus: As web applications handle more sensitive data, the importance of robust security practices, such as multi-factor authentication (MFA), encryption, and secure development frameworks, will grow.
โค2
Forwarded from Artificial Intelligence
๐Ÿ“ ๐…๐ซ๐ž๐ž ๐˜๐จ๐ฎ๐“๐ฎ๐›๐ž ๐‘๐ž๐ฌ๐จ๐ฎ๐ซ๐œ๐ž๐ฌ ๐ญ๐จ ๐๐ฎ๐ข๐ฅ๐ ๐€๐ˆ ๐€๐ฎ๐ญ๐จ๐ฆ๐š๐ญ๐ข๐จ๐ง๐ฌ & ๐€๐ ๐ž๐ง๐ญ๐ฌ ๐–๐ข๐ญ๐ก๐จ๐ฎ๐ญ ๐‚๐จ๐๐ข๐ง๐ ๐Ÿ˜

Want to Create AI Automations & Agents Without Writing a Single Line of Code?๐Ÿง‘โ€๐Ÿ’ป

These 5 free YouTube tutorials will take you from complete beginner to automation expert in record time.๐Ÿง‘โ€๐ŸŽ“โœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lhYwhn

Just pure, actionable automation skills โ€” for free.โœ…๏ธ
Top 10 Data Science Concepts You Should Know ๐Ÿง 

1. Data Cleaning: Garbage In, Garbage Out. You can't build great models on messy data. Learn to spot and fix errors before you start. Seriously, this is the most important step.

2. EDA: Your Data's Secret Diary. Before you build anything, EXPLORE! Understand your data's quirks, distributions, and relationships. Visualizations are your best friend here.

3. Feature Engineering: Turning Data into Gold. Raw data is often useless. Feature engineering is how you transform it into something your models can actually learn from. Think about what the data represents.

4. Machine Learning: The Right Tool for the Job. Don't just throw algorithms at problems. Understand why you're using linear regression vs. a random forest.

5. Model Validation: Are You Lying to Yourself? Too many people build models that look great on paper but fail in the real world. Rigorous validation is essential.

6. Feature Selection: Less Can Be More. Get rid of the noise! Focusing on the most important features improves performance and interpretability.

7. Dimensionality Reduction: Simplify, Simplify, Simplify. High-dimensional data can be a nightmare. Learn techniques to reduce complexity without losing valuable information.

8. Model Optimization: Squeeze Every Last Drop. Fine-tuning your model parameters can make a huge difference. But be careful not to overfit!

9. Data Visualization: Tell a Story People Understand. Don't just dump charts on a page. Craft a narrative that highlights key insights.

10. Big Data: When Things Get Serious. If you're dealing with massive datasets, you'll need specialized tools like Hadoop and Spark. But don't start here! Master the fundamentals first.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค2
๐—ฆ๐˜๐—ฒ๐—ฝ ๐—œ๐—ป๐˜๐—ผ ๐—ฎ ๐—•๐—–๐—š ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜โ€™๐˜€ ๐—ฆ๐—ต๐—ผ๐—ฒ๐˜€: ๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐—ถ๐—บ๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป + ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ๐Ÿ˜

๐Ÿ’ผ Ever Wondered How Data Shapes Real Business Decisions at a Top Consulting Firm?๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

Now you can experience it firsthand with this interactive simulation from BCG (Boston Consulting Group)๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45HWKRP

This is a powerful resume booster and a unique way to prove your analytical skillsโœ…๏ธ
โค2
Core data science concepts you should know:

๐Ÿ”ข 1. Statistics & Probability

Descriptive statistics: Mean, median, mode, standard deviation, variance

Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA

Probability distributions: Normal, Binomial, Poisson, Uniform

Bayes' Theorem

Central Limit Theorem


๐Ÿ“Š 2. Data Wrangling & Cleaning

Handling missing values

Outlier detection and treatment

Data transformation (scaling, encoding, normalization)

Feature engineering

Dealing with imbalanced data


๐Ÿ“ˆ 3. Exploratory Data Analysis (EDA)

Univariate, bivariate, and multivariate analysis

Correlation and covariance

Data visualization tools: Matplotlib, Seaborn, Plotly

Insights generation through visual storytelling


๐Ÿค– 4. Machine Learning Fundamentals

Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN

Unsupervised Learning: K-means, hierarchical clustering, PCA

Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC

Cross-validation and overfitting/underfitting

Bias-variance tradeoff


๐Ÿง  5. Deep Learning (Basics)

Neural networks: Perceptron, MLP

Activation functions (ReLU, Sigmoid, Tanh)

Backpropagation

Gradient descent and learning rate

CNNs and RNNs (intro level)


๐Ÿ—ƒ๏ธ 6. Data Structures & Algorithms (DSA)

Arrays, lists, dictionaries, sets

Sorting and searching algorithms

Time and space complexity (Big-O notation)

Common problems: string manipulation, matrix operations, recursion


๐Ÿ’พ 7. SQL & Databases

SELECT, WHERE, GROUP BY, HAVING

JOINS (inner, left, right, full)

Subqueries and CTEs

Window functions

Indexing and normalization


๐Ÿ“ฆ 8. Tools & Libraries

Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch

R: dplyr, ggplot2, caret

Jupyter Notebooks for experimentation

Git and GitHub for version control


๐Ÿงช 9. A/B Testing & Experimentation

Control vs. treatment group

Hypothesis formulation

Significance level, p-value interpretation

Power analysis


๐ŸŒ 10. Business Acumen & Storytelling

Translating data insights into business value

Crafting narratives with data

Building dashboards (Power BI, Tableau)

Knowing KPIs and business metrics

React โค๏ธ for more
โค2