Tips for solving leetcode codings interview problems
If input array is sorted then
- Binary search
- Two pointers
If asked for all permutations/subsets then
- Backtracking
If given a tree then
- DFS
- BFS
If given a graph then
- DFS
- BFS
If given a linked list then
- Two pointers
If recursion is banned then
- Stack
If must solve in-place then
- Swap corresponding values
- Store one or more different values in the same pointer
If asked for maximum/minimum subarray/subset/options then
- Dynamic programming
If asked for top/least K items then
- Heap
If asked for common strings then
- Map
- Trie
Else
- Map/Set for O(1) time & O(n) space
- Sort input for O(nlogn) time and O(1) space
If input array is sorted then
- Binary search
- Two pointers
If asked for all permutations/subsets then
- Backtracking
If given a tree then
- DFS
- BFS
If given a graph then
- DFS
- BFS
If given a linked list then
- Two pointers
If recursion is banned then
- Stack
If must solve in-place then
- Swap corresponding values
- Store one or more different values in the same pointer
If asked for maximum/minimum subarray/subset/options then
- Dynamic programming
If asked for top/least K items then
- Heap
If asked for common strings then
- Map
- Trie
Else
- Map/Set for O(1) time & O(n) space
- Sort input for O(nlogn) time and O(1) space
โค4
๐๐ฟ๐ฒ๐ฒ ๐๐ & ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐๐ผ๐๐ฟ๐๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐๐
Want to explore AI & Machine Learning but donโt know where to start โ or donโt want to spend โนโนโน on it?๐จโ๐ป
Learn the foundations of AI, machine learning basics, data handling, and real-world use cases in just a few hours.๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/401SWry
This 100% FREE course is designed just for beginners โ whether youโre a student, fresher, or career switcherโ ๏ธ
Want to explore AI & Machine Learning but donโt know where to start โ or donโt want to spend โนโนโน on it?๐จโ๐ป
Learn the foundations of AI, machine learning basics, data handling, and real-world use cases in just a few hours.๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/401SWry
This 100% FREE course is designed just for beginners โ whether youโre a student, fresher, or career switcherโ ๏ธ
โค1
Top free Data Science resources
1. CS109 Data Science
http://cs109.github.io/2015/pages/videos.html
2. Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/
3. Learning From Data from California Institute of Technology
http://work.caltech.edu/telecourse
4. Mathematics for Machine Learning by University of California, Berkeley
https://gwthomas.github.io/docs/math4ml.pdf?fbclid=IwAR2UsBgZW9MRgS3nEo8Zh_ukUFnwtFeQS8Ek3OjGxZtDa7UxTYgIs_9pzSI
5. Foundations of Data Science by Avrim Blum, John Hopcroft, and Ravindran Kannan
https://www.cs.cornell.edu/jeh/book.pdf?fbclid=IwAR19tDrnNh8OxAU1S-tPklL1mqj-51J1EJUHmcHIu2y6yEv5ugrWmySI2WY
6. Python Data Science Handbook
https://jakevdp.github.io/PythonDataScienceHandbook/?fbclid=IwAR34IRk2_zZ0ht7-8w5rz13N6RP54PqjarQw1PTpbMqKnewcwRy0oJ-Q4aM
7. CS 221 โ Artificial Intelligence
https://stanford.edu/~shervine/teaching/cs-221/
8. Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science
https://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-of-data-science-fall-2015/lecture-notes/MIT18_S096F15_TenLec.pdf
9. Python for Data Analysis by Boston University
https://www.bu.edu/tech/files/2017/09/Python-for-Data-Analysis.pptx
10. Data Mining bu University of Buffalo
https://cedar.buffalo.edu/~srihari/CSE626/index.html?fbclid=IwAR3XZ50uSZAb3u5BP1Qz68x13_xNEH8EdEBQC9tmGEp1BoxLNpZuBCtfMSE
Credits: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
1. CS109 Data Science
http://cs109.github.io/2015/pages/videos.html
2. Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/
3. Learning From Data from California Institute of Technology
http://work.caltech.edu/telecourse
4. Mathematics for Machine Learning by University of California, Berkeley
https://gwthomas.github.io/docs/math4ml.pdf?fbclid=IwAR2UsBgZW9MRgS3nEo8Zh_ukUFnwtFeQS8Ek3OjGxZtDa7UxTYgIs_9pzSI
5. Foundations of Data Science by Avrim Blum, John Hopcroft, and Ravindran Kannan
https://www.cs.cornell.edu/jeh/book.pdf?fbclid=IwAR19tDrnNh8OxAU1S-tPklL1mqj-51J1EJUHmcHIu2y6yEv5ugrWmySI2WY
6. Python Data Science Handbook
https://jakevdp.github.io/PythonDataScienceHandbook/?fbclid=IwAR34IRk2_zZ0ht7-8w5rz13N6RP54PqjarQw1PTpbMqKnewcwRy0oJ-Q4aM
7. CS 221 โ Artificial Intelligence
https://stanford.edu/~shervine/teaching/cs-221/
8. Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science
https://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-of-data-science-fall-2015/lecture-notes/MIT18_S096F15_TenLec.pdf
9. Python for Data Analysis by Boston University
https://www.bu.edu/tech/files/2017/09/Python-for-Data-Analysis.pptx
10. Data Mining bu University of Buffalo
https://cedar.buffalo.edu/~srihari/CSE626/index.html?fbclid=IwAR3XZ50uSZAb3u5BP1Qz68x13_xNEH8EdEBQC9tmGEp1BoxLNpZuBCtfMSE
Credits: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
โค2
๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ? ๐๐ฒ๐ฟ๐ฒโ๐ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐๐ฒ๐ฝ-๐ฏ๐-๐ฆ๐๐ฒ๐ฝ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ผ ๐๐ฟ๐ฎ๐ฐ๐ธ ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐-๐๐ฎ๐๐ฒ๐ฑ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐!๐
Landing your dream tech job takes more than just writing code โ it requires structured preparation across key areas๐จโ๐ป
This roadmap will guide you from zero to offer letter! ๐ผ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GdfTS2
This plan works if you stay consistent๐ชโ ๏ธ
Landing your dream tech job takes more than just writing code โ it requires structured preparation across key areas๐จโ๐ป
This roadmap will guide you from zero to offer letter! ๐ผ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GdfTS2
This plan works if you stay consistent๐ชโ ๏ธ
โค1
Hey guys,
Today, letโs talk about some of the Python questions you might face during a data analyst interview. Below, Iโve compiled the most commonly asked Python questions you should be prepared for in your interviews.
1. Why is Python used in data analysis?
Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.
2. What are the essential libraries used for data analysis in Python?
Some key libraries youโll use frequently are:
- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.
3. What is a Python dictionary, and how is it used in data analysis?
A dictionary in Python is an unordered collection of key-value pairs. Itโs extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.
Example:
4. Explain the difference between a list and a tuple in Python.
- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโs written in square brackets
Example:
- Tuple: Immutable, meaning once defined, you cannot modify it. Itโs written in parentheses
Example:
5. How would you handle missing data in a dataset using Python?
Handling missing data is critical in data analysis, and Pythonโs Pandas library makes it easy. Here are some common methods:
- Drop missing data:
- Fill missing data with a specific value:
- Forward-fill or backfill missing values:
6. How do you merge/join two datasets in Python?
- pd.merge(): For SQL-style joins (inner, outer, left, right).
- pd.concat(): For concatenating along rows or columns.
7. What is the purpose of lambda functions in Python?
A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.
Example:
Lambdas are often used in data analysis for quick transformations or filtering operations within functions like
If youโre preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.
Here you can find essential Python Interview Resources๐
https://t.me/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Today, letโs talk about some of the Python questions you might face during a data analyst interview. Below, Iโve compiled the most commonly asked Python questions you should be prepared for in your interviews.
1. Why is Python used in data analysis?
Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.
2. What are the essential libraries used for data analysis in Python?
Some key libraries youโll use frequently are:
- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.
3. What is a Python dictionary, and how is it used in data analysis?
A dictionary in Python is an unordered collection of key-value pairs. Itโs extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.
Example:
sales = {"January": 12000, "February": 15000, "March": 17000}
print(sales["February"]) # Output: 15000
4. Explain the difference between a list and a tuple in Python.
- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโs written in square brackets
[ ]
.Example:
my_list = [10, 20, 30]
my_list.append(40)
- Tuple: Immutable, meaning once defined, you cannot modify it. Itโs written in parentheses
( )
.Example:
my_tuple = (10, 20, 30)
5. How would you handle missing data in a dataset using Python?
Handling missing data is critical in data analysis, and Pythonโs Pandas library makes it easy. Here are some common methods:
- Drop missing data:
df.dropna()
- Fill missing data with a specific value:
df.fillna(0)
- Forward-fill or backfill missing values:
df.fillna(method='ffill') # Forward-fill
df.fillna(method='bfill') # Backfill
6. How do you merge/join two datasets in Python?
- pd.merge(): For SQL-style joins (inner, outer, left, right).
df_merged = pd.merge(df1, df2, on='common_column', how='inner')
- pd.concat(): For concatenating along rows or columns.
df_concat = pd.concat([df1, df2], axis=1)
7. What is the purpose of lambda functions in Python?
A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.
Example:
add = lambda x, y: x + y
print(add(10, 20)) # Output: 30
Lambdas are often used in data analysis for quick transformations or filtering operations within functions like
map()
or filter()
.If youโre preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.
Here you can find essential Python Interview Resources๐
https://t.me/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค5
๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐๐ถ๐น๐ฑ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ ๐ง๐ต๐ฎ๐ ๐๐ฒ๐๐ ๐ฌ๐ผ๐ ๐๐ถ๐ฟ๐ฒ๐ฑ?๐
If youโre just starting out in data analytics and wondering how to stand out โ real-world projects are the key๐
No recruiter is impressed by โjust theory.โ What they want to see? Actionable proof of your skills๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ezeIc9
Show recruiters that you donโt just โknowโ tools โ you use them to solve problemsโ ๏ธ
If youโre just starting out in data analytics and wondering how to stand out โ real-world projects are the key๐
No recruiter is impressed by โjust theory.โ What they want to see? Actionable proof of your skills๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ezeIc9
Show recruiters that you donโt just โknowโ tools โ you use them to solve problemsโ ๏ธ
โค1
๐ฐ TypeScript Roadmap for Beginners 2025
โโโ ๐ง Why TypeScript? JavaScript with Superpowers
โโโ โ๏ธ Setting up TypeScript (tsc, tsconfig)
โโโ ๐ก Type Annotations (number, string, boolean, etc.)
โโโ ๐ฆ Interfaces & Type Aliases
โโโ ๐งฑ Classes, Inheritance & Access Modifiers
โโโ ๐ Generics
โโโ โ Type Narrowing & Type Guards
โโโ ๐ Enums, Tuples & Union Types
โโโ ๐งฉ Modules & Namespaces
โโโ ๐ง Working with TypeScript & React/Vue
โโโ ๐งช TypeScript Projects:
โ โโโ Form Validation App
โ โโโ API Data Viewer with TS + Fetch
โ โโโ Typed To-do App
Free Resources: https://whatsapp.com/channel/0029Vax4TBY9Bb62pAS3mX32
โโโ ๐ง Why TypeScript? JavaScript with Superpowers
โโโ โ๏ธ Setting up TypeScript (tsc, tsconfig)
โโโ ๐ก Type Annotations (number, string, boolean, etc.)
โโโ ๐ฆ Interfaces & Type Aliases
โโโ ๐งฑ Classes, Inheritance & Access Modifiers
โโโ ๐ Generics
โโโ โ Type Narrowing & Type Guards
โโโ ๐ Enums, Tuples & Union Types
โโโ ๐งฉ Modules & Namespaces
โโโ ๐ง Working with TypeScript & React/Vue
โโโ ๐งช TypeScript Projects:
โ โโโ Form Validation App
โ โโโ API Data Viewer with TS + Fetch
โ โโโ Typed To-do App
Free Resources: https://whatsapp.com/channel/0029Vax4TBY9Bb62pAS3mX32
โค1
๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ โ ๐๐ถ๐ฟ๐ฒ๐ฐ๐๐น๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ผ๐ผ๐ด๐น๐ฒ?๐
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
โค2
๐ง Technologies for Data Science, Machine Learning & AI!
๐ Data Science
โช๏ธ Python โ The go-to language for Data Science
โช๏ธ R โ Statistical Computing and Graphics
โช๏ธ Pandas โ Data Manipulation & Analysis
โช๏ธ NumPy โ Numerical Computing
โช๏ธ Matplotlib / Seaborn โ Data Visualization
โช๏ธ Jupyter Notebooks โ Interactive Development Environment
๐ค Machine Learning
โช๏ธ Scikit-learn โ Classical ML Algorithms
โช๏ธ TensorFlow โ Deep Learning Framework
โช๏ธ Keras โ High-Level Neural Networks API
โช๏ธ PyTorch โ Deep Learning with Dynamic Computation
โช๏ธ XGBoost โ High-Performance Gradient Boosting
โช๏ธ LightGBM โ Fast, Distributed Gradient Boosting
๐ง Artificial Intelligence
โช๏ธ OpenAI GPT โ Natural Language Processing
โช๏ธ Transformers (Hugging Face) โ Pretrained Models for NLP
โช๏ธ spaCy โ Industrial-Strength NLP
โช๏ธ NLTK โ Natural Language Toolkit
โช๏ธ Computer Vision (OpenCV) โ Image Processing & Object Detection
โช๏ธ YOLO (You Only Look Once) โ Real-Time Object Detection
๐พ Data Storage & Databases
โช๏ธ SQL โ Structured Query Language for Databases
โช๏ธ MongoDB โ NoSQL, Flexible Data Storage
โช๏ธ BigQuery โ Googleโs Data Warehouse for Large Scale Data
โช๏ธ Apache Hadoop โ Distributed Storage and Processing
โช๏ธ Apache Spark โ Big Data Processing & ML
๐ Data Engineering & Deployment
โช๏ธ Apache Airflow โ Workflow Automation & Scheduling
โช๏ธ Docker โ Containerization for ML Models
โช๏ธ Kubernetes โ Container Orchestration
โช๏ธ AWS Sagemaker / Google AI Platform โ Cloud ML Model Deployment
โช๏ธ Flask / FastAPI โ APIs for ML Models
๐ง Tools & Libraries for Automation & Experimentation
โช๏ธ MLflow โ Tracking ML Experiments
โช๏ธ TensorBoard โ Visualization for TensorFlow Models
โช๏ธ DVC (Data Version Control) โ Versioning for Data & Models
React โค๏ธ for more
๐ Data Science
โช๏ธ Python โ The go-to language for Data Science
โช๏ธ R โ Statistical Computing and Graphics
โช๏ธ Pandas โ Data Manipulation & Analysis
โช๏ธ NumPy โ Numerical Computing
โช๏ธ Matplotlib / Seaborn โ Data Visualization
โช๏ธ Jupyter Notebooks โ Interactive Development Environment
๐ค Machine Learning
โช๏ธ Scikit-learn โ Classical ML Algorithms
โช๏ธ TensorFlow โ Deep Learning Framework
โช๏ธ Keras โ High-Level Neural Networks API
โช๏ธ PyTorch โ Deep Learning with Dynamic Computation
โช๏ธ XGBoost โ High-Performance Gradient Boosting
โช๏ธ LightGBM โ Fast, Distributed Gradient Boosting
๐ง Artificial Intelligence
โช๏ธ OpenAI GPT โ Natural Language Processing
โช๏ธ Transformers (Hugging Face) โ Pretrained Models for NLP
โช๏ธ spaCy โ Industrial-Strength NLP
โช๏ธ NLTK โ Natural Language Toolkit
โช๏ธ Computer Vision (OpenCV) โ Image Processing & Object Detection
โช๏ธ YOLO (You Only Look Once) โ Real-Time Object Detection
๐พ Data Storage & Databases
โช๏ธ SQL โ Structured Query Language for Databases
โช๏ธ MongoDB โ NoSQL, Flexible Data Storage
โช๏ธ BigQuery โ Googleโs Data Warehouse for Large Scale Data
โช๏ธ Apache Hadoop โ Distributed Storage and Processing
โช๏ธ Apache Spark โ Big Data Processing & ML
๐ Data Engineering & Deployment
โช๏ธ Apache Airflow โ Workflow Automation & Scheduling
โช๏ธ Docker โ Containerization for ML Models
โช๏ธ Kubernetes โ Container Orchestration
โช๏ธ AWS Sagemaker / Google AI Platform โ Cloud ML Model Deployment
โช๏ธ Flask / FastAPI โ APIs for ML Models
๐ง Tools & Libraries for Automation & Experimentation
โช๏ธ MLflow โ Tracking ML Experiments
โช๏ธ TensorBoard โ Visualization for TensorFlow Models
โช๏ธ DVC (Data Version Control) โ Versioning for Data & Models
React โค๏ธ for more
โค2
Forwarded from Python Projects & Resources
๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐๐๐๐ ๐ฅ๐ฒ๐น๐ฒ๐ฎ๐๐ฒ๐ฑ ๐ฑ ๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฌ๐ผ๐ ๐๐ฎ๐ปโ๐ ๐ ๐ถ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
๐จ Harvard just dropped 5 FREE online tech courses โ no fees, no catches!๐
Whether youโre just starting out or upskilling for a tech career, this is your chance to learn from one of the worldโs top universities โ for FREE. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4eA368I
๐กLearn at your own pace, earn certificates, and boost your resumeโ ๏ธ
๐จ Harvard just dropped 5 FREE online tech courses โ no fees, no catches!๐
Whether youโre just starting out or upskilling for a tech career, this is your chance to learn from one of the worldโs top universities โ for FREE. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4eA368I
๐กLearn at your own pace, earn certificates, and boost your resumeโ ๏ธ
โค1
Here is an A-Z list of essential programming terms:
1. Array: A data structure that stores a collection of elements of the same type in contiguous memory locations.
2. Boolean: A data type that represents true or false values.
3. Conditional Statement: A statement that executes different code based on a condition.
4. Debugging: The process of identifying and fixing errors or bugs in a program.
5. Exception: An event that occurs during the execution of a program that disrupts the normal flow of instructions.
6. Function: A block of code that performs a specific task and can be called multiple times in a program.
7. GUI (Graphical User Interface): A visual way for users to interact with a computer program using graphical elements like windows, buttons, and menus.
8. HTML (Hypertext Markup Language): The standard markup language used to create web pages.
9. Integer: A data type that represents whole numbers without any fractional part.
10. JSON (JavaScript Object Notation): A lightweight data interchange format commonly used for transmitting data between a server and a web application.
11. Loop: A programming construct that allows repeating a block of code multiple times.
12. Method: A function that is associated with an object in object-oriented programming.
13. Null: A special value that represents the absence of a value.
14. Object-Oriented Programming (OOP): A programming paradigm based on the concept of "objects" that encapsulate data and behavior.
15. Pointer: A variable that stores the memory address of another variable.
16. Queue: A data structure that follows the First-In-First-Out (FIFO) principle.
17. Recursion: A programming technique where a function calls itself to solve a problem.
18. String: A data type that represents a sequence of characters.
19. Tuple: An ordered collection of elements, similar to an array but immutable.
20. Variable: A named storage location in memory that holds a value.
21. While Loop: A loop that repeatedly executes a block of code as long as a specified condition is true.
Best Programming Resources: https://topmate.io/coding/898340
Join for more: https://t.me/programming_guide
ENJOY LEARNING ๐๐
1. Array: A data structure that stores a collection of elements of the same type in contiguous memory locations.
2. Boolean: A data type that represents true or false values.
3. Conditional Statement: A statement that executes different code based on a condition.
4. Debugging: The process of identifying and fixing errors or bugs in a program.
5. Exception: An event that occurs during the execution of a program that disrupts the normal flow of instructions.
6. Function: A block of code that performs a specific task and can be called multiple times in a program.
7. GUI (Graphical User Interface): A visual way for users to interact with a computer program using graphical elements like windows, buttons, and menus.
8. HTML (Hypertext Markup Language): The standard markup language used to create web pages.
9. Integer: A data type that represents whole numbers without any fractional part.
10. JSON (JavaScript Object Notation): A lightweight data interchange format commonly used for transmitting data between a server and a web application.
11. Loop: A programming construct that allows repeating a block of code multiple times.
12. Method: A function that is associated with an object in object-oriented programming.
13. Null: A special value that represents the absence of a value.
14. Object-Oriented Programming (OOP): A programming paradigm based on the concept of "objects" that encapsulate data and behavior.
15. Pointer: A variable that stores the memory address of another variable.
16. Queue: A data structure that follows the First-In-First-Out (FIFO) principle.
17. Recursion: A programming technique where a function calls itself to solve a problem.
18. String: A data type that represents a sequence of characters.
19. Tuple: An ordered collection of elements, similar to an array but immutable.
20. Variable: A named storage location in memory that holds a value.
21. While Loop: A loop that repeatedly executes a block of code as long as a specified condition is true.
Best Programming Resources: https://topmate.io/coding/898340
Join for more: https://t.me/programming_guide
ENJOY LEARNING ๐๐
โค5
Forwarded from Artificial Intelligence
๐จ๐ฝ๐๐ธ๐ถ๐น๐น ๐๐ฎ๐๐: ๐๐ฒ๐ฎ๐ฟ๐ป ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ถ๐๐ต ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐-๐๐ฎ๐๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ถ๐ป ๐๐๐๐ ๐ฏ๐ฌ ๐๐ฎ๐๐!๐
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
โค2
๐ Roadmap to Become a C++ Developer ๐ฐ
๐ Programming Basics
โโ๐ Master C++ Syntax, Variables & Data Types
โโโ๐ Learn Control Flow, Loops & Functions
โโโโ๐ Practice with Simple Programs
๐ Object-Oriented Programming (OOP)
โโ๐ Understand Classes, Objects & Inheritance
โโโ๐ Dive into Encapsulation, Polymorphism & Abstraction
โโโโ๐ Explore Templates & the Standard Template Library (STL)
๐ Memory Management & Pointers
โโ๐ Grasp Pointers, References & Dynamic Memory Allocation
โโโ๐ Master Manual Memory Management
โโโโ๐ Learn Smart Pointers & RAII Principles
๐ Data Structures & Algorithms
โโ๐ Study Arrays, Vectors, Lists, Maps & Sets
โโโ๐ Understand Sorting, Searching & Recursion
โโโโ๐ Solve Coding Challenges to Reinforce Concepts
๐ Tools & Build Systems
โโ๐ Get Comfortable with IDEs (e.g., Visual Studio, CLion)
โโโ๐ Learn CMake & Other Build Tools
โโโโ๐ Master Git & Version Control Systems
๐ Advanced C++ Concepts
โโ๐ Explore Lambda Functions & Modern C++ Features
โโโ๐ Understand Multithreading & Concurrency
โโโโ๐ Dive into Performance Optimization & Best Practices
๐ Debugging & Testing
โโ๐ Learn Debugging Techniques & Tools
โโโ๐ Master Unit Testing with Frameworks (e.g., Google Test)
โโโโ๐ Analyze and Optimize Code Performance
๐ Projects & Real-World Applications
โโ๐ Build Complex, End-to-End C++ Applications
โโโ๐ Contribute to Open-Source Projects
โโโโ๐ Showcase Your Work on GitHub & Portfolio
๐ Interview Preparation & Job Hunting
โโ๐ Solve C++ Coding Challenges
โโโ๐ Master Data Structures, Algorithms & System Design
โโโโ๐ Network & Apply for C++ Roles
โ ๏ธ Get Hired
React "โค๏ธ" for More ๐จโ๐ป
๐ Programming Basics
โโ๐ Master C++ Syntax, Variables & Data Types
โโโ๐ Learn Control Flow, Loops & Functions
โโโโ๐ Practice with Simple Programs
๐ Object-Oriented Programming (OOP)
โโ๐ Understand Classes, Objects & Inheritance
โโโ๐ Dive into Encapsulation, Polymorphism & Abstraction
โโโโ๐ Explore Templates & the Standard Template Library (STL)
๐ Memory Management & Pointers
โโ๐ Grasp Pointers, References & Dynamic Memory Allocation
โโโ๐ Master Manual Memory Management
โโโโ๐ Learn Smart Pointers & RAII Principles
๐ Data Structures & Algorithms
โโ๐ Study Arrays, Vectors, Lists, Maps & Sets
โโโ๐ Understand Sorting, Searching & Recursion
โโโโ๐ Solve Coding Challenges to Reinforce Concepts
๐ Tools & Build Systems
โโ๐ Get Comfortable with IDEs (e.g., Visual Studio, CLion)
โโโ๐ Learn CMake & Other Build Tools
โโโโ๐ Master Git & Version Control Systems
๐ Advanced C++ Concepts
โโ๐ Explore Lambda Functions & Modern C++ Features
โโโ๐ Understand Multithreading & Concurrency
โโโโ๐ Dive into Performance Optimization & Best Practices
๐ Debugging & Testing
โโ๐ Learn Debugging Techniques & Tools
โโโ๐ Master Unit Testing with Frameworks (e.g., Google Test)
โโโโ๐ Analyze and Optimize Code Performance
๐ Projects & Real-World Applications
โโ๐ Build Complex, End-to-End C++ Applications
โโโ๐ Contribute to Open-Source Projects
โโโโ๐ Showcase Your Work on GitHub & Portfolio
๐ Interview Preparation & Job Hunting
โโ๐ Solve C++ Coding Challenges
โโโ๐ Master Data Structures, Algorithms & System Design
โโโโ๐ Network & Apply for C++ Roles
โ ๏ธ Get Hired
React "โค๏ธ" for More ๐จโ๐ป
โค5
Forwarded from Python Projects & Resources
๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐โ๐ ๐๐ฅ๐๐ ๐๐ ๐๐ด๐ฒ๐ป๐๐ ๐๐ผ๐๐ฟ๐๐ฒ โ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ ๐๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐ ๐ช๐ผ๐ฟ๐ธ๐๐
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
โค1
WhatsApp is no longer a platform just for chat.
It's an educational goldmine.
If you do, youโre sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
๐๐
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
๐๐
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
๐๐
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
๐๐
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
๐๐
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
๐๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
๐๐
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ๐๐
It's an educational goldmine.
If you do, youโre sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
๐๐
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
๐๐
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
๐๐
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
๐๐
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
๐๐
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
๐๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
๐๐
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ๐๐
โค2
Forwarded from Python Projects & Resources
๐ช๐ถ๐ฝ๐ฟ๐ผโ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฐ๐ฐ๐ฒ๐น๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ: ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐-๐ง๐ฟ๐ฎ๐ฐ๐ธ ๐๐ผ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ!๐
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
โค3
PHP Handwritten Notes.pdf
47.4 MB
PHP Handwritten Notes ๐
React โค๏ธ for more Handwritten notes ๐๐คฉ
React โค๏ธ for more Handwritten notes ๐๐คฉ
โค5