Javascript
18.6K subscribers
808 photos
119 videos
2 files
1.25K links
По всем вопросам - @workakkk

@itchannels_telegram -🔥лучшие ИТ-каналы

@ai_machinelearning_big_data - машинное обучение

@JavaScript_testit- js тесты

@pythonl - 🐍

@ArtificialIntelligencedl - AI

@datascienceiot - ml 📚

РКН: № 5153160945
Download Telegram
🔍 OmniParser — это инструмент от Microsoft, предназначенный для разбора и анализа интерфейсов приложений на основе скриншотов

OmniParser - инструмент для анализа скриншотов пользовательского интерфейса, разработанный для улучшения работы агентов UI на основе LLM.

Он преобразует скриншоты в структурированный формат, выделяя интерактивные области и описывая функции элементов(кнопки, иконки, значки и т.д) и не требует исходного HTML или иерархии представлений.

OmniParser состоит из двух моделей:

🟢Модель обнаружения интерактивных элементов, основанная на YOLOv8 и обученная на датасете из 67 тысяч скриншотов веб-страниц с аннотациями кликабельных областей.

🟢Модель описания функций элементов UI, основанная на BLIP-2, обученная на 7 тысячах пар "элемент-описание", созданных с помощью GPT-4o.

OmniParser был протестирован в бенчмарках ScreenSpot, Mind2Web и AITW, где превзошел агентов на основе GPT-4V и модели, обученные на данных графических интерфейсов (SeeClick, CogAgent и Fuyu).

⚠️ OmniParser может испытывать трудности с распознаванием повторяющихся элементов, текста и с определением точных границ кликабельных областей.

▶️Локальная установка и запуск в Gradio UI :

# Create conda env
conda create -n "omni" python==3.12
conda activate omni

# Install requirement
pip install -r requirement.txt

# Run Gradio UI
python gradio_demo.py

📌Лицензирование: MIT License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥Github


#AI #ML #Microsoft #YOLO8 #BLIP #OmniParser


🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102🔥2
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 Text-to-Speech в браузере на безе OuteTTS.

Простое приложение React + Vite для запуска OuteTTS с помощью Transformers.js и WebGPU.

Попробовать демо можно на HuggingSpace. При первом запуске модель загружается в кэш браузера, это занимает какое-то время.

▶️ Локальная установка и запуск:

# Clone the repository
git clone https://github.com/huggingface/transformers.js-examples.git

# Go to project dir
cd transformers.js-examples/text-to-speech-webgpu

# Install the dependencies via npm
npm i

# Run dev server
npm run dev

# Open your browser and go to http://localhost:5173



🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #TTS #WebGPU #TransfomersJS
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥2👏2