(java || kotlin) && devOps
367 subscribers
6 photos
1 video
6 files
307 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Сегодня будет пост про паттерн Saga.
Saga - это способ осуществить распределённую транзакцию. Обычная транзакция осуществляется в рамках одной сущности, как правило базы данных. Распределённая - между несколькими. Проблема здесь в том, что для одной системы - реляционной БД или кластера Kafka - можно воспользоваться встроенным механизмом транзакций, для распределённой - нет.
В общем случае распределённые транзакции могут понадобиться и для операций между несколькими монолитными приложениями, но наиболее актуальны они стали при переходе на микросервисы, т.к. при этом расширились границы существующих бизнес транзакций.

Возможно кто-то слышал в применении к распределённым транзакциям и Java такие аббревиатуры как XA или JTA. Это стандарт Java EE (Jakarta EE) для осуществления распределённых транзакций между JDBC и JMS источниками. Существует давно, есть работающие реализации - https://samolisov.blogspot.com/2011/02/xa-jta-javase-spring-atomikos-2.html
Что же с ним не так, раз понадобился новый патерн?
1) т.к. в JTA появляется новая сущность - координатор транзакций - и сам процесс двухфазный - подготовка и фиксация транзакции - то это приводит к накладным расходам на сетевые вызовы и увеличению задержек (latency)
2) JTA стандарт ограничивает нас JRE совместимыми языками. Более того, не все поддерживают JDBC - см. noSQL хранилища - и JMS - см. Kafka. Причём последняя не стала добавлять поддержку JMS/JTA принципиально https://docs.confluent.io/platform/current/clients/kafka-jms-client/index.html
3) диспетчер транзакций - это ещё одна точка отказа. Пусть их и так много - для транзакции из 3 фаз это минимум 9 = (сервис + хранилище + сеть) х 3, и это не учитывая датацентры, СХД... И кажется, что добавление ещё одной сильно ситуацию не ухудшит. Но эта диспетчер - это централизованная (единая) точка отказа, при сбое диспетчера придётся повторять всю транзакцию с начала.

Но вернёмся к саге. Во-первых у нее есть 2 варианта реализации - оркестрация и хореография. Оркестрация - транзакция управляется из одного микросервиса, хореография - нет единой точки управления, просто идёт обмен сообщениями между микросервисами. Оркестрацией проще управлять и тестировать, хореография более надёжна, т.к. нет единой точки отказа.
Вот тут неплохое описание отличий https://learn.microsoft.com/ru-ru/azure/architecture/reference-architectures/saga/saga
Во-вторых: сага - это не стандарт или библиотека, это архитектурный патерн - реализацию нужно будет писать самому.

Суть саги - одну большую транзакцию мы делим на ряд локальных транзакций, в рамках которых обеспечивается строгая тразакционность. Плюс все локальные транзакции мы упорядочиваем таким образом, что вначале идут компенсируемые транзакции, а потом - повторяемые. Первые в случае сбоя мы компенсируем - т.е. откатываем, вторые - докатываем. Соответственно, в середине есть поворотная (pivot) локальная транзакция, после успешного выполнения которой все последующие транзакции мы обязаны докатить.

To be continued...

#patterns #microservices #saga
Всем привет!

Продолжение про сагу.

Когда мы говорим про транзакции, сначала всплывает аббревиатура ACID. Транзакции должны обеспечивать принципы ACID. Посмотрим что тут у нас с сагой.
A - атомарность: или все выполняется, или все откатывается. Собственно атормарность есть в определении паттерна, см. выше. Единственное отличие - у нас нет волшебного rollback на всю распределённую транзакцию, бизнес логику отката придётся писать руками.
C - консистентность данных. Сага обеспечивает т.наз. eventually consistentcy - конечную согласованность. Т.е. данные будут согласованы только после окончания распределённой транзакции. В течение транзакции данные в разных микросервисах могут расходится. Транзакция в БД может обеспечить строгую согласованность изменяемых данных с нужным уровнем изоляции. Поэтому переходим к
I - изоляции изменений внутри транзакции от других операций. Сага не обеспечивает ее совсем, что с этим можно сделать описано в статье про это патерн от Microsoft по ссылке выше. Важный момент - в отличие от транзакции в БД, которая как правило длится миллисекунды, распределённая транзакция - это секунды, может даже десятки секунд. Несогласованность данных в течение этого времени из-за отсутствия изоляции нужно иметь в виду. В дополнение к описанным в статье по ссылке способом скажу ещё один - завершать транзакцию как можно быстрее и игнорировать несогласованность данных) Пример: клиент вряд ли будет жаловаться в службу поддержки, если после отмены заказа деньги и бонусы вернутся на счёт в течение минуты. И скорее всего будет - если это не будет сделано через час.
D - надёжность хранения данных, к саге отношения напрямую не имеет, обеспечивается используемыми хранилищами.

Т.к. в итоге мы получили ACD, причем неполноценный, то для распределенных транзакций придумали новую аббревиатуру - Basically Available, Soft-state, Eventually consistent - https://ru.m.wikipedia.org/wiki/Теорема_CAP#BASE-архитектура

Ещё один интересный момент про сагу: определение последовательности шагов - локальных транзакций. Единственно верной схемы нет, но есть рекомендации. Первая - fail fast. Т.е. если есть локальная транзакция, которая упадёт с большей вероятностью - ее нужно ставить вначале. Пример: резерв билета или товара. Вторая - если какая-то локальная транзакция проводит к критичной для клиента несогласованность данных - ее нужно выполнять как можно позже. Что делать, если эти рекомендации противоречат друг другу - зависит от сценария, но в целом я бы выбрал уменьшение времени неконсистентности.

Еще интересный момент касается саги в виде оркестрации. Т.к. ее главный плюс - сделать простой и понятной бизнес логику саги, то самая очевидная ее реализация вот такая:

class OrderSaga {
SagaResult execute() {
// шаг 1
// шаг 2
// ...
}
}

Назовём этот подход Transaction Script, есть такой Паттерн организации бизнес логики.
Просто - да. Но если процесс сложный, каждый шаг тоже, то мы ухудшим читаемость кода, получим замечание SonarQube про длину метода да и нарушим S из SOLID, принцип единой ответственности. Что делать? Использовать event driven подход:
class OrderSaga {
PrepareEvent start(...) {..}
ReserveEvent makeReservation(...) {...}
// ...
}
При необходимости обработку событий можно разнести в разные классы. Чтобы было понимание как работает процесс нужно написать пару модульных тестов - позитивный и негативные сценарии, ведь тесты в идеале - лучшая документация к коду. Ещё один плюс - в событийной стиле легко сделать весь процесс неблокирующим, например, через адаптер отправляя и принимая все события в Kafka. Да, есть ещё БД, запись в БД в эту парадигме - это такое же событие. В этом случае стоит посмотреть в сторону R2DBC https://www.baeldung.com/r2dbc Для REST endpoint и client есть Spring WebFlux.
К слову, Transaction script тоже может обеспечить неблокирующее выполнение, но только в языках программирования с async await: c#, python, rust https://learn.microsoft.com/ru-ru/dotnet/csharp/language-reference/operators/await

To be continued...

#patterns #saga #microservices #acid #arch_compromises
Всем привет!

Этим постом завершается серия по паттерну Сага.

В предыдущем посте забыл упомянуть 3-й и 4-й способ реализации Саги.

Третий - если вы используете BPMN движок, например, Camunda, то он отлично подходит для оркестратора Саги. Более того, использовать BPMN как оркестратор - лучшая идея, чем использовать его как среду для low-code разработки. Ну не верю я в low-code, не сталкивался с работающими кейсами) Главные плюсы BPMN в данном - случае готовая state machine и визуализация Саги. К слову сама Camunda поставила этот use case на первое место в списке https://camunda.com/solutions/microservices-orchestration/ что как бы намекает. На всякий случай: Camunda - это самый распространенный BPMN движок, собственно движок - opensource, платить нужно только за UI консоль.

Аналогично - если вы уже используете Apache Camel - он тоже умеет в сагу, https://camel.apache.org/components/4.4.x/eips/saga-eip.html

Тут встает вопрос - стоит ли внедрять данные инструменты только ради Саги? Базовый ответ нет, идеальный кейс: если какой-то из этих компонент уже у вас используется - логично реализовать оркестрацию с его помощью. Я бы внедрял, если бы были какие-то еще плюсы от использования, кроме собственно реализации паттерна.

Еще важный момент при реализации оркестратора - stateless или statefull? Да, любая бизнес операция имеет как минимум ID и состояние, которые нужно хранить. Но необязательно это делать в классе Саги. Особенно используя event driven подход, можно просто передавать все не необходимые данные в событиях\командах. Напомню, при этом сохранение состояния операции в БД - это тоже событие. Плюс такого подхода - не нужно думать о букве D из ACID, т.е. персистентности, для данных, хранимых в оркестраторе. А где персистентность, там и кэширование, т.к. обращение к БД - дорого. И восстановление данных из БД при сбоях. Поэтому если вы все же решили хранить состояние операции в коде - я бы рекомендовал не изобретать велосипед, а воспользоваться готовым фреймворком. Два из них я уже упомянул выше, но они достаточно "тяжелые". Вот еще несколько, заточенных собственно под паттерн Сага и под DDD, который в общем-то тесно связан с сагой. Ведь если мы делим систему на ограниченный контексты, Bounded Context, то их данные лежат в разных БД, а следовательно возникает распределенная транзакция...

1) Axios https://docs.axoniq.io/reference-guide/v/3.1/part-ii-domain-logic/sagas
2) Eventuate Tram Saga https://eventuate.io/docs/manual/eventuate-tram/latest/getting-started-eventuate-tram-sagas.html
3) Seata https://www.seata.io/docs/user/mode/saga


Фреймворк помогает нам с:
а) персистентностью
б) кэшированием
в) созданием экземпляра саги для конкретной бизнес-операции
г) удобной работой с параметрами операции

При этом он не отменяет написания кода оркестрации и компенсирующих действий.

На этом пожалуй все.
Хотя нет. Остается вопрос - как же лучше реализовать Сагу? Ответ - лучше сделать свой ограниченный контекст = микросервис таким, чтобы Сага была не нужна)
А если серьезно.
1) постарайтесь использовать только локальные транзакции
2) если это не возможно, и у вас 2-4 шага - используйте хореографию
3) если шагов от 4+ и сервис создаётся с нуля - используйте оркестратор, для начала самописный, stateless event driven
4) у вас уже используется Camunda или Camel - делайте оркестратор на их основе
5) если вас нужен state - используйте фреймворки из последнего списка, например, Axios
6) если нужна сага и state machine - Camunda или Seata

#saga #microservices #ddd #patterns
Highload прошел, но интересные доклады еще остались)

"AppHost: как Яндекс организует взаимодействие сотен микросервисов"

Честно - не ожидал такого хода от Яндекса.
В чем суть?

У Яндекса микросервисная архитектура, большое количество микросервисов и жесткие требования по времени ответа пользователю. При этом очень сложно контролировать всю цепочку вызовов микросервисов по конкретной фиче, чтобы оптимизировать время ответа. Убрать лишние вызовы или найти самый долгий для его оптимизации. Один из вариантов решения проблемы есть в предыдущем моем посте (реверс-инжиниринг по трейсам), но ребят данный вариант не устроил из-за его не 100% точности.

Они тоже сделали граф вызовов для каждого бизнес-процесса. Но граф этот задается владельцем процесса явно в текстовом виде. Ремарка - как найти владельца для бизнес-процесса из десятка микросервисов - отдельный вопрос. Возвращаясь к сути, из того что я увидел: в конфигурации задаются сервисы - поставщики данных, их зависимости, таймауты, протоколы и схемы обмена данными. И это не просто часть аналитики, более того - как я понимаю в Яндексе нет требований по наличию аналитики. Это исполняемая спецификация: каждый запрос вначале попадает на новый микросервис - собственно AppHost из названия доклада - который загружает граф и выполняет его. Вызывая нужные микросервисы, предварительно проверяя необходимость и возможность его вызова. В итоге получаем топологию микросервисов в виде звезды, где AppHost в центре.

Сразу же возникает вопрос по надежности решения.
Ответы:
а) AppHost - stateless сервис, горизонтально масштабируемый, более того его инсталляции разделены по разным бизнес-доментам. Плюс есть всякие лайфхаки - например, при сбое по умолчанию пользовательский запрос отправляется на повторное выполнение, но при наличии специфических ошибок (ошибок, ломающих логику AppHost) повтор отключается
б) всегда есть критически важные сервисы, от которых зависят все или почти все остальные. Аутентификация, авторизация, прокси - как минимум. И ничего - они тоже дорабатываются, новые версии выкатываются. Здесь главное не сделать такой оркестратор слишком сложным.

Да, возвращаясь к принципу: все новое - это хорошо забытое старое. Во-первых это мне напоминает паттерн Сага в виде оркестратора. Во-вторых - старый недобрый ESB - Enterprise Service Bus - на новом витке развития. Напомню, его ключевое отличие от Kafka - брокер ESB содержит бизнес-логику и занимается маппингом данных, а брокер Kafka - в основном обеспечивает отказоустойчивость.

Ну и отдельно - вот принцип Architecture As Code в действии. Этап вливания конфигурации с графом сервисов - хорошая точка для контроля архитектуры. В целом идея мне нравится, ключевой момент тут - сознательное ограничение сложности оркестратора. Тогда получим увеличение надежности системы в целом. Но повторюсь - не ожидал, что эта идея возникнет у Яндекса.

#arch #aac #saga #esb