(java || kotlin) && devOps
369 subscribers
6 photos
1 video
6 files
306 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Постов долгое время не было, причина типичная - много работы. Вообще не помню времени, когда ее было мало((( И были ли вообще такие времена?)

Хотел бы поднять сегодня такую важную тему как взаимодействие разработчиков и сопровождения.
Для начала одна общеизвестная информация - разработчики и сопровождение исходя из своих задач обречены на противостояние.
Задача разработчиков - менять приложение, задача сопровождения - обеспечивать его работоспособность. А как известно: работает - не трогай) Любое изменение потенциальный источник проблем.
Отсюда часто следует одна крайность - сопровождение максимально критично относится к любым изменениям, разработка "виновна" по умолчанию, требуется строгое соблюдение регламентов, любая нестандартная просьба разработки встречается "в штыки".
Почему это плохо?
Сейчас основная методология разработки - это Agile в разных вариациях. Один из ключевых моментов в Agile - это команда, командная ответственность, гибкие решения в команде. А сопровождение в описываемом кейсе выступает внешним "врагом" - блокирует инициативы команды, замедляет скорость выпуска новых версий. А высокая частота выхода в ПРОМ - еще одна важная часть Agile.
С таким кейсом я, увы, сталкивался и наблюдал его губительный для команды эффект. Часто свои требования сопровождение объясняет требованиями надежности. Хорошее ли это объяснение - зависит от деталей. Если объяснение звучит как-то так - это снизит надежность, т.к. ... и идет описание причин - то да, хорошее.
Если слово надежность произносится, а никаких деталей не приводится - это признак того, что сопровождение боится изменений и не хочет развиваться.
Есть и другая крайность - сопровождение "согласно на все") Не выставляет никаких требований, принимает любые дистрибутивы. Кейс более редкий. Чем это плохо - разработчики опять же исходя из своих основных задач редко думают о том, как их код будет сопровождаться. Обычно на разработку времени хватает впритык.
Какой выход из данной ситуации?
Выставлять требования со стороны сопровождения.
Требования зависят от компании, отрасли, приложения, числа пользователей и много чего.
Но базовые требования могут быть такими:
1) список метрик, позволяющих отслеживать работоспособность
2) требования к логам - где и в каком объеме. Сюда же я бы добавил требования к фильтрации логов, с важным дополнением - возможность фильтрации зависит как от разработчиков бизнес-приложения, так и от разработчиков системы просмотра логов
3) требования к трассировке (tracing) - особенно важно если мы имеем дело с микросервисами
4) наличие инструкции для сопровождения в случае, если установка релиза требует ручных действий
5) наличие сценария отката на предыдущую версию. Это может быть выключение feature toggle или номер версии для отката. Самое важное - сама возможность отката. Это тоже требование, его нужно или соблюдать, или если это невозможно, например, в случае необратимых изменений в БД - составлять план действий на случай неудачной раскатки
6) фиксирование таймаутов внешних вызовов: я уже писал что бесконечные таймауты - одна из основных причин падения приложения
7) требования по UI для ручного разбора ошибок, если все предыдущие требования не помогли)

Почему я говорю "могут быть такие требования" - я все же изначально разработчик, поэтому имею некие предустановки и не вижу полной картины. Если есть возражения и дополнения - возражайте и дополняйте)

#dev #ops
Всем привет!

На собеседовании я иногда задаю вопрос: приведите пример нарушения принципа Single responsibility. Или альтернативный вариант - а вот если в методе, к примеру, activateCard мы заодно отбросим метрики или залогируем результат - это нарушение принципа или нет.
На первый взгляд ответ - нет. Метрики и логи - это технический код, не бизнес функционал. Он может понадобиться в любом месте кода. Часто такой функционал реализуют с помощью аспектов, т.к. во-первых - это можно реализовать с помощью аспектов, а во-вторых - это красиво))), т.е. некий синтаксический сахар, улучшающий читаемость кода.
Но можно рассмотреть немного другую ситуацию. Предположим, есть код с математическими вычислениям. Или любой алгоритм. Или логика обработки данных. То, что хорошо реализуется в функциональном стиле - входные данные метода, результат, никаких внешних зависимостей. В нём нет внешних взаимодействий, сохранения в хранилище. Чистая логика. В этом случае логирование и метрики - это уже некая обработка полученного результата. Мы же не просто так выводим что-то в лог - это либо данные для разбора ошибки, либо отслеживание пользовательского пути, сбор статистики, отслеживание времени выполнения кода... Т.е. есть отдельная логика по месту и составу того, что мы логируем. Опять же контекст логирования часто требует инициализации, что добавляет ненужные зависимости в нашу логику. Поэтому такой код лучше поместить на уровень выше.
Итого: бизнес функционал и логирование/метрики - да, "чистая" логика - нет.

#logging #metrics #interview_question #code_design #solid #dev_compromises
Всем привет!

Сегодня пятница, поговорим немного о магии.
Что я считаю одним из самых плохих качеств разработчика - веру в магию.
Симптомы магического мышления: фразы типа "ну вроде починил", "ну вроде работает". Или хаотичный перебор настроек в надежде, что все заработает. Или нежелание что-то менять в коде, из-за боязни поломать.
У любой проблемы при разработке ПО есть причины. Иногда они очевидны, иногда нужно потратить дни или недели, чтобы понять - почему оно так работает.
Бывает так, что не хватает времени, чтобы разобраться в причинах. Бывает так, что корни проблемы лежат в области, где не хватает компетенции - СУБД, внешняя система, pipeline. Это нужно понимать и признавать. Решение - искать специалиста или просить больше времени на разбор. Четыре лайфхака по самостоятельному разбору проблем:
1) посмотреть исходный код проблемного компонента, даже если он не ваш
2) погуглить)))
3) внимательнее читать логи. Часто вижу, что первая подозрительная запись в логах останавливает поиск. А если промотать еще десяток строк - лежит нормальное описание ошибки.
4) разбить проблему на части, т.к. часто самые загадочные случаи - это следствие череды ошибок.

Ну и прекрасная иллюстрация того, что любая магия имеет объяснение - вот эта статья: https://habr.com/ru/articles/759344/

#dev
Всем привет!

Я уже поднимал тему boolean параметров как антипаттерна https://t.me/javaKotlinDevOps/229. Давайте расширим ее до вопроса - когда стоит использовать if?
Является ли if антипаттерном?
По мнению некоторых товарищей - да, является: https://www.antiifprogramming.com/about-the-anti-if.php
Как по мне - не всегда, зависит от ситуации.
Чем плох if? // да, switch - это по сути тот же if.

1) может нарушать принцип Single Responsibility. Почему - думаю объяснять не нужно.
2) может ухудшать читаемость кода, я которую я всегда "топлю") Т.е. нарушает принцип KISS. Усугубляет ситуацию тот факт, что код как правило не остается неизменным. И обычный if else со временем может превратится в многоуровневого нечитаемого монстра.
3) может нарушать принцип Don't Repeat Yourself. Тут два очевидных варианта - либо во всех ветках if выражения есть дублирующийся код, либо чтобы обработать возврат некого метода всегда нужен if.
4) если в коде слишком много if (x != null) - это признак того, что вы неправильно работаете с nullability. Тут могу посоветовать Kotlin, т.к. он может сообщать о null значениях на этапе компиляции. Optional и его альтернативы в Java избавляют от NPE, но не избавляет от проверок на null. Я видел советы - просто не пишите код, который возвращает null - тогда проверки будут не нужны. Но это надежда на человеческий фактор, и компилятор (я про Kotlin) работает лучше)))

Да, я специально пишу везде слово "может". Бывают if-ы, которые не нарушают ни один из принципов.

Когда стоит волноваться?

1) подключаем SonarQube или Checkstyle и не игнорируем ошибки, связанные с цикломатической сложностью методов, см. https://t.me/javaKotlinDevOps/197
2) код просто сложно становится читать. Особенно хорошо эта проверка проходит на новых разработчиках)

Идеально конечно не писать код, приводящий к лишним if. Но я уже писал про человеческий фактор выше)

Что можно сделать? // будет некоторый повтор написанного тут https://t.me/javaKotlinDevOps/229

1) выделяем сложный код условия в отдельный метод.
2) вместо двух или более веток оператора if делаем несколько методов. Помогает в случае, если условно метод А всегда вызывает метод С с значением true, а метод Б - с значением false. Иначе будет как на знаменитой картинке - проблема не на моей стороне)))
3) используем not null объекты и переходим Kotlin
4) перепроектируем код, чтобы проверки выполнялись в одном месте, а не дублировались по коду. Для этого их придется перенести из вызывающего кода в вызываемый. И придумать правильное значение по умолчанию.
5) при необходимости вводим иерархию классов, чтобы каждый класс отвечал за одну ветку switch
6) используем паттерн Стратегия - по сути частный случай введения иерархии классов
7) используем паттерн Состояние (State), который кроме хранения состояния выполняет обработку, связанную с различными состояниями, тем самым убирая if из вызывающего кода

#antipatterns #if_antipattern #java #kotlin #solid #patterns #dev_compromises
Всем привет!

В коде я часто вижу раздражающий меня паттерн - интерфейс с одной реализацией.
Почему так делается и когда так делать не стоит?

Для начала - когда полезны интерфейсы:

1) соблюдение принципа инверсии зависимостей, буква D из SOLID. См. https://t.me/javaKotlinDevOps/179 Высокоуровневые классы не должны зависеть от конкретных реализаций. На первый взгляд без интерфейсов тут никак. Да и на второй тоже) Но важно уточнить, что речь именно про базовые классы с логикой, т.наз. domain logic. Например, контроллера это не касается. Или адаптера к внешнему сервису.

2) соблюдение принципов гексагональной архитектуры. См. https://t.me/javaKotlinDevOps/232 Тут тоже есть нюанс - интерфейс и реализация должны находится в разных слоях приложения. Т.е. кейса, когда реализация лежит в подпакете impl рядом с интерфейсом это не касается. К слову, если мы говорим про слой бизнес-логики, то требования DI и гексагональной архитектуры - это одни и те же требования. И применимы они в основном для слоя бизнес-логики, она же предметная область.

3) Магии Spring проще работать с интерфейсами. Здесь важный момент - проще, но Spring вполне может работать и с классами без интерфейсов. Т.е. Spring или реализует интерфейс или наследуется от класса. Первое возможно всегда, второе - только если класс не финальный. И то, это важно для @Configuration, классов с методами, помеченными как @Transactional и @Async и возможно какими-то еще кейсами, о которых я забыл. Для Java просто не стоит делать их финальными. Для Kotlin - есть плагин kotlin-allopen, который сделает все за вас, а его актуальность увеличивает тот факт, что в Kotlin все классы по умолчанию финальные. И чтобы совсем уже не было вопросов - IDEA подсвечивает такие классы красным, предлагаю сделать их не финальными.

Почему если ваш случай не 1 и не 2 лучше не заводить интерфейс. Два аргумента:

1) меньше классов - лучше читаемость. А я за нее всегда топлю!) И за число строк кода не платят. Я надеюсь по крайней мере, что и у вас так)

2) мы не строим здания или мосты, мы пишем код. И при появлении второй реализации, например, тестовой, очень легко выделить интерфейс. Для этого есть готовый рефакторинг в IDEA. И еще есть рефакторинг переименование класса. Занимает 10 минут, шансов что-то сломать мало, особенно если есть достаточное покрытие кода тестами.

Вывод: интерфейсы полезны для соблюдения принципа Dependency Inversion и\или гексагональной архитектуры. Или когда есть хотя бы 2 реализации, включая тестовую. В остальных случаях нужно дважды подумать - нужны ли они вам.

#principles #dev_compromises
Всем привет!

Является ли ООП - объекто-ориентированное программирование - чем-то плохим? Ответ - ну нет. Благодаря объектам мы можем воспроизвести в коде реальные бизнес-объекты, а это стирает барьеры между заказчиком, аналитиком и разработчиком. Конечно, есть альтернативные подходы, например, функциональный. Или если посмотреть в другую сторону - декларативный. Но ООП жил, жив и будет жить)

Является ли архитектура сервиса, состоящая из нескольких слоев абстракции, какой-то излишней или неправильной? Нет, это стандартный подход в архитектуре - вводить новые уровни абстракции. Даже шутка на этот счет есть) Spring, Hibernate и куча других библиотек - это тоже новые слои абстракции. Цель введения нового слоя - упростить использование какой-то библиотеки или адаптировать ее для новой предметной области.

Что плавно подводит нас к паттернам Адаптер, Прокси и иже с ними https://t.me/javaKotlinDevOps/124 Паттерны - штука полезная, и да, я снова об этом уже писал https://t.me/javaKotlinDevOps/52 )))

И последний (риторический) вопрос: являются ли принципы DRY - Don't Repeat Yourself - и Single Responsibility вредными? Наоборот, они делают код более устойчивым к изменениям и упрощают его изучение.

Но почему же тогда в мире ПО не редкость встретить вот такую фабрику фабрик фабрик: https://factoryfactoryfactory.net ?

Ответ: ООП, принципы и паттерны не заменяют здравый смысл и чувство меры)

#oop #patterns #craftmanship #dev_compromises
Всем привет!

Недавно набрел на интересную статью - https://enterprisecraftsmanship.com/posts/domain-model-purity-completeness
Настоятельно рекомендую ее прочитать, но как всегда вкратце перескажу)

В крупную клетку любой нормально спроектированный сервис включает в себя контроллер (порт в терминологии гексагональной архитекторы), модель и адаптеры.
Вся логика должна быть в модели. Но что делать, если предварительная проверка данных требует обращения к внешней системе (БД), и при этом построение запроса для проверки - это тоже бизнес-логика.

Варианта предлагается три:
1) внести ее в модель, скрыть обращение к данным за интерфейсами, но в любом случае в итоге наше ядро (модель) лезет в БД, что плохо. В первую очередь плохо концептуально, а если "спустится на землю" - сложнее писать модульные тесты, увеличиваются риски "загрязнения" ядра. Т.е. следующие поколения разработчиков видя, что из модели вызывается СУБД, скажут - а что, так можно было?) И будут тянуть в модель другие внешние зависимости. Теория еще такая есть, разбитых окон. К слову - автор статьи также автор отличной книги о модульном тестировании, я о ней уже писал https://t.me/javaKotlinDevOps/50, возможно поэтому ему данный вариант не нравится
2) оставить часть логики в контроллере. Но тогда получается, что логика размазана по двум слоям
3) заранее загрузить нужные данные в ядро. Допустимо, но только для каких-то маленьких и редко меняющихся справочников, типа регионов. Т.е. только в отдельных случаях.

В итоге у нас компромисс между полнотой модели, строгостью соблюдения архитектурных принципов и скоростью работы.
Что тут интересно - главная идея статьи не о том, как сделать правильно, а про то, что разработка ПО - это искусство компромиссов.
Теорема CAP, упоминаемая в статье, к слову о том же. Единственного правильного для всех случаев жизни решения нет. Увы(

Еще одно дополнение. В теории возможен еще один вариант, расширяющий пространство компромиссов. Он немного "наркоманский" в том плане, что усложняет систему.
Предположим мы сделаем интерфейс валидатора в модели. Правила валидации будет задавать декларативно и хранить в модели, не привязывая их к конкретному хранилищу. Т.е. код контроллера вместо:

validateLogic()
callModel()

превращается в:

val rules = getValidateRulesFromModel()
val request = buildValidateRequest()
validate(request)
callModel()

Сам же и покритикую. Задача вроде решена, но дополнительного кода потребуется много. Второй минус, тоже важный - последовательность вызовов неочевидна. Если новый разработчик придет в команду - очень может быть он скажет "WTF" и захочет переписать. Как решение этой проблемы могу предложить описывать алгоритм в документации к коду или аналитике. Документация не нужна с "говорящим" кодом, но тут как раз исключение. Но сложность понимания кода в любом случае повышается.
Т.об. в пространство компромиссов мы вводим еще один параметр - сложность. Полнота модели, целостность архитектуры, скорость и сложность.

#arch #unittests #dev_compromises
Всем привет!

Вытяну ссылку из комментариев сюда: https://youtu.be/hUzpe73Oa3g?si=c_dY1YU2Cc_F8YiY
Хороший ролик про границы применимости паттерна Value Object.

На всякий случай - что такое Value Object и чем он отличается от DTO - https://matthiasnoback.nl/2022/09/is-it-a-dto-or-a-value-object/

Также стоит отметить, что данный паттерн является одним из основных в DDD - Domain Driven Development.

А по видео у меня такой краткий вывод - а точнее два:
1) у любого паттерна есть своя область применения
2) когда вы придумали некий хитрый лайфхак, перед тем как реализовывать его в коде стоит взять паузу и подумать.
Насколько он понятен для новичка? Не усложнит ли он код? Насколько? Не станет ли поддержка такого кода сложнее? Не добавит ли он в вашу модель "уязвимость", позволяющую использовать классы и методы не так, как задумывалось изначально?
Часто лучше написать больше простого кода, чем меньше, но неочевидного и допускающего неверное использование. И далее либо разбить этот код на микросервисы, либо на модули - например, см. мой пост про Modulith - https://t.me/javaKotlinDevOps/143

#patterns #arch #dev_compromises
Всем привет!

Одна из моих любимых тем, вторая после читаемости кода, это скажем так "разработка - искусство компромиссов".
Редко встречаются ситуации, когда какой-то паттерн или принцип можно применять по формальным критериям всегда и везде. Более того, часто паттерны и принципы противоречат друг другу. Рассмотрим пример.

Есть такой паттерн, по моему опыту проведения интервью самый известный после синлетона - фабрика. А точнее абстрактная фабрика, именно такой паттерн описан в классике - Design Patterns: Elements of Reusable Object-Oriented Software. Суть его в том, что функция создания новых объектов выносится в отдельный класс. Создаваемые объекты являются наследниками какого-то базового класса или интерфейса. Классов фабрик может быть несколько, при этом каждая фабрика создает все (!) необходимые для проведения некой операции совместимые (!) между собой объекты. Вот более подробное описание с примером https://habr.com/ru/articles/465835/

Т.е. на первый взгляд паттерн работает четко в соответствии с принципом единственной ответственности (Single Responsibility) - создание отделено от доменного объекта, более того, для разных потребителей процесс создания объектов разнесен по разным фабрикам - ToyotaFactory и FordFactory из статьи выше.

А теперь изменим пример из статьи - будем создавать не разные типы кузовов автомобилей, а детали автомобиля. А деталей в авто подозреваю несколько тысяч... И список их более изменчивый, чем список типов кузовов. Т.е. по сути объединив в одном классе создание нескольких объектов мы уже заложили мину замедленного действия. Где находится грань между работой по Single Responsibility и его нарушением?

Базовый ответ был в первом абзаце - все зависит от бизнес-процесса. Но попробуем добавить конкретики.
Для начала можно вспомнить про лайфхак - можно оставить в фабрике один метод и передавать ему на вход Enum с типом создаваемого объекта.
class Factory {
SomeItem createSomeItem();
OtherItem createOtherItem();
}

vs

class Factory {
Item createItem(ItemType type);
}
Он немного упрощает добавление новых классов, т.к. не надо менять API фабрики, но в итоге приводит к тому же результату. Но дает нам подсказку: когда в Enum становится слишком много элементов - значит с фабрикой надо что-то делать.
Еще вариант - посмотреть, что скажет SonarQube. Он предлагает ограничиться 35 методами и 750 строками кода для одного класса. Как по мне - это много, я бы начинал делить фабрику на части раньше, при появлении 10-15 методов или по мере появления логических сущностей, позволяющих взять группу связанных методов из большой фабрики и вынести их в отдельную фабрику.

#patterns #solid #dev_compromises
Всем привет!

Разработка ПО - очень динамичная сфера. Мэйнфреймы, ассемблер, CSV, RDBMS, C, Delphi, Java, REST, MQ, git, DevOps, Docker, k8s, Kafka, noSQL, microservices, reactive programming, DataLake, GitOps, ChatGPT...
Но есть вещи, которые не меняются. 1967 год, сформулирован закон Конвея - Любая организация, которая разрабатывает систему (в широком смысле), вынуждена создавать проекты, структуры которых являются копией структуры связей организации.
Причем если верить wiki, а в данном случае IMHO это можно делать, закон даже был доказан, видимо на исследовании реальных компаний.
Так вот, читаю сейчас одну интересную книгу про внедрение DDD - Domain Driven Development, 2022 года выпуска. В главе про внедрение вижу такой совет - начать с того, что определить бизнесовые поддомены в компании, на основании которых будут строится ограниченные контексты - одна из ключевых сущностей DDD. Как их проще всего определить? Рекомендуется посмотреть на структуру организации. Закон Конвея в DDD)

P.S. Интересно и то, что в 1967 году разработка как отрасль уже достигла уровня, позволяющего формулировать определенные принципы.

#ddd #dev_law #book_review
Всем привет!

Попробую немного развить тему с законом Конвея из предыдущего поста.
Я достаточно много раз за свою карьеру в разработке сталкивался с упоминанием данного закона. Уже не вспомню где конкретно, но у меня осталось стойкое впечатление, что отношение к нему было как к неизбежности, с которой нужно бороться. Способы борьбы можно вспомнить такие:
1) корпоративные архитекторы, выравнивающие архитектурные шаблоны
2) внутренние платформы, обязательные к использованию внутри компании и реализующие единообразно нефункциональные требования
3) техрадар как способ ограничить технологический стек
4) единые практики найма и онбординга
5) корпоративная модель данных - как антипод принципа DDD, когда существует некая общая для организации единственно верная доменная модель
...

Так вот - что мне нравится в парадигме DDD, что она говорит - не надо бороться, надо принять как данность, расслабиться и получать удовольствие от своего ограниченного контекста) Ремарка – речь про применение закона в проектировании ПО.

#ddd #dev_law
Всем привет!

Хочется сказать пару слов о практике T-Shape. Это когда помимо своей основной специальности - например, разработки, ты развиваешь навыки в чем-то еще. Какие именно - если рассмотреть состав типовой команды, то это будут аналитик или тестировщик. Если смотреть дальше - это могут быть DevOps, НТ. Даже может быть сопровождение ПРОМа. Насколько я знаю, такая практика применяется в лидере российского ИТ - Яндексе. Рассмотрим плюсы и минусы на примере разработчика-тестировщика.

Плюсы в целом очевидны:
1) взаимозаменяемость членов команды
2) упрощение найма за счет унификации

Но есть и минусы.
1) суть работы тестировщика - найти проблемы в коде, рассматривая его как черный ящик. Именно потому, что тестировщик не знает, что внутри, но знает, как оно должно работать - ему удается найти те баги, которые не увидел разработчик. У которого просто замылился глаз, т.к. код он знает, он его проектировал, рефакторил, отлаживал. По тому же принципу, к слову, работает ручное код-ревью. Код-ревью и тестирование можно рассматривать как 2 последовательных рубежа обороны. Конечно, можно ввести практик: код пишет один разраб, а тестирует обязательно другой. Но это уже усложнение и влияние человеческого фактора.

2) как я вижу развитие инженерных специальностей и ИТ в частности - все развиваются в сторону более узкой специализации. Да, любую технологию, фреймворк, библиотеку или платформу можно изучить. Проблема в том, что их очень много. Много и в разработке, и в тестировании. И "распыляя" свои усилия на 2 направления есть риск полноценно не научится ни тому, ни другому.

3) этот пункт субъективный из-за того, что я разработчик. Сравнивая разработку и тестирование как две области деятельности я бы всегда выбирал разработку. IMHO, подчеркну, что INHO, она сложнее, имеет больше направлений и поэтому интереснее. Отсюда риск, что на тестирование будет выделяться меньше времени. Вопрос в уровне инженерной культуры и дисциплине, но это снова человеческий фактор. В каких-то командах баланс будет найден, в каких-то нет и в итоге мы получим недотестированный код и баги ПРОМа.

Итог - практика интересная, но требует высокой инженерной культуры в компании и подвержена рисками человеческого фактора.

#t_shape #devops #testing #dev
Всем привет!

В комментариях к предыдущему посту (на Хабре) справедливо заметили, что T-Shape может быть вынужденный.
Это когда есть приложение на редкой технологии, а команда создавшая его разбежалась. Примеры технологий, которые вспомнил: Informatica, Erlang, хранимые процедуры в БД... Или legacy монолит и снова команды уже нет. А точнее остались 1-2 человека. На рынке людей или не найдёшь (редкая технология) или они не тянут распил незнакомого им монолита (второй кейс).
В этом случае оставшиеся члены команды поневоле становятся t-shape-ми.
Случай грустный. При выборе технологий была допущена ошибка, ее приходится исправлять. Но есть и плюсы. Опыт трансформации legacy, да ещё в T-shape режиме - задача очевидно сложная. А бизнесу нужны люди, умеющие решать сложные задачи.

#dev #t_shape
Всем привет!

Когда заходит речь о разделении обязанностей между разработчиками и DevOps споры возникают в двух моментах - манифесты k8s\Openshift и CI джобы - они же джобы сборки.
Поговорим про первые.
Мое мнение - за манифесты k8s\Openshift должны отвечать разработчики. Почему? А вот почему:
1) liveness\readiness probes - только разработчики знают, по каким URL они находятся. Конечно в мире Spring Boot и Actuator есть некая стандартизация, но не везде и не всегда. Не всегда actuator подходит для healthcheck, но это отдельная тема
2) liveness\readiness timeouts - разработчики точно знают сколько времени старт пода. DevOps-ы могут это время эмпирически определить, но это требует времени)
3) timeouts, circuit breaker, retry - опять же только разработчики могут сказать, реализовали они их на прикладном уровне или требуется настройка на уровне Service Mesh. Могут быть требования корпоративной архитектуры\сопровождения ПРОМ, их определяющие, но опять же не везде и не всегда.
4) куда пишутся логи, какие существуют метрики, где их можно взять. Снова можно повториться, что где-то это стандартизировано, где-то нет.
5) любые другие тонкие облачные настройки - переменные среды, значение параметров в ConfigMap, поддержка graceful shutdown ....
Наверняка DevOps или сопровожденец со всем этим разберется. Но будет ли это эффективно?

#dev #devops
Всем привет!

В продолжение предыдущего поста попробую сам себе возразить.
Предположим, что наши DevOps инженеры так круто настроили pipeline, что все атрибуты, которые должен настроить разработчик, параметризованы и могут быть легко настроены разработчиком. Например, с помощью чартов Helm. Хотя по большому счёту не важно.
Значит ли это, что разработчик может расслабиться и не изучать все эти ваши Deployment, Service, EnvoyFilter, VirtualService и прочие? Мой ответ - нет. И вот почему.
1) если рассуждать дальше, то и Docker разработчику не нужен. Пусть его же DevOps-ы настраивают. А я на Tomcat встроенном запущу. Но вспомним в чем суть Docker - единая среда у разработчиков, тестировщиков и ПРОМа. Что позволяет избежать большой части ошибок, возникающих из-за разницы настроек окружения. Не всех, но большого числа
2) окей, Docker пусть будет. А k8s? Но идея та же. Приложение в облаке ведёт себя по другому, чем в standalone. Его может в любой момент прибить k8s и поднять на другой node. А это ограничивает возможности локального кэширования. В облаке несколько приложений может работать параллельно. Это нужно учитывать, например, при чтении из топика Kafka. Более того число подов может меняться - см. HorizontalPodAutoscaler. Еще момент - по умолчанию у нас ephemeral storage и надеятся на то, что те же логи сохранятся после перезапуска, нельзя. Ещё момент - одно из Cloud Native требований - быстрый старт приложения, опять же из-за потенциального перезапуска в любой момент. На этот момент не всегда обращают внимание, хотя варианты улучшения времени запуска есть, см. серию постов выше. И это я вспомнил навскидку, возможно что-то ещё упустил.

Надеюсь, я вас убедил. Если нет - жду в комментах)

#dev #devops
Всем привет!

Ну что, началось)
https://www.piter.com/collection/all/product/programmirovanie-na-python-s-pomoschyu-github-copilot-i-chatgpt
Ок, ещё одна книжка про ChatGPT. Смотрим аннотацию: «Используя GitHub Copilot, можно простым языком описать, что должна делать программа, а искусственный интеллект тут же сгенерирует ее.
Узнайте, как создавать и улучшать программы на Python с помощью ИИ, даже если прежде вы не написали ни строчки компьютерного кода.». И ещё: « Глава 4 — первая из двух глав, в которых вы научитесь читать код на языке Python. Действительно, Copilot будет писать код за вас, но вам нужно уметь читать его, чтобы определить, будет ли он делать то, что вы хотите. И не волнуйтесь: Copilot поможет вам читать код!»
И это не ролик, не статья, целая книга...
Войти в IT, если с первого раза не получилось) Интересно, на собесах Copylot уже используют?)
Меня только один вопрос мучает: если человек не захотел или не смог освоить язык программирования (фреймворк) - как хорошо он сможет спроектировать сервис или алгоритм?

#llm #dev
Всем привет!

Увидел у коллеги аналитика в канале интересное мнение. Разработка - это синоним унижения, т.к. у вас всегда что-то не будет работать.
С мнением не согласен)
Посыл, что что-то всегда не будет работать - абсолютно верный. Причём сломаться может даже сборка проекта, в котором ещё ничего не меняли. Т.е. разработка ещё не началась, а уже что-то сломалось) Обидно)
Только на мой взгляд такая ситуация - это вызов. И в т.ч. и в этом кайф от разработки.

P.S. Но как я писал ранее в посте примере про внедрение проблемной технологии (крепостное слово Jixb): если решение вызова занимает неделю или две, вместо пары дней, и все это время команда ждёт - вы свернули не на ту дорогу. Не всякие вызовы стоит принимать)

#dev
Всем привет!

Одна из моих любимых тем: разработка - искусство компромиссов. Поиск по тэгам #dev_compromises и #arch_compromises. Следствие этого подхода, принцип, который я бы назвал - "не все так однозначно".

Вопрос - как вы относитесь к рефлексии в Java?

Досрочный ответ: рефлексия - это плохо, лучше не использовать. Если дошло до рефлексии - значит в архитектуре проблема.

Чтобы лучше разобраться в теме надо ответить на вопрос: а почему плохо?
Ответа два:

1) рефлексия позволяет нарушить принципы ООП и, следовательно, архитектуру приложения. Автор скрыл внутренности класса через private, а мы туда лезем своими "грязными руками")))

2) снижение производительности. Тут частично работает тот факт, что делаются лишние вызовы кода. Но самое главное - JIT компилятор плохо умеет оптимизировать такой код, т.к. он слишком динамический. Изменится может сам класс, который приходит на вход метода с рефлексией

Окей, инкапсуляция нарушается, код работает медленно. Не используем?

А что с поиском аннотаций по коду? Не своих - до них мы еще дойдем - чужих, чтобы получить некие метаданные об объекте. Большинство вариантов вот тут основано на рефлексии https://www.baeldung.com/java-scan-annotations-runtime

Или у нас есть аннотации, созданные с помощью Spring AOP - это проще, чем AspectJ, если у вас используется Spring. А Spring AOP использует динамические прокси, создаваемые в runtime https://www.baeldung.com/spring-aop-vs-aspectj А с помощью чего создается прокси в runtime - правильно, рефлексии.

Да что там AOP - создание бинов из @Configuration - это тоже вызов методов @Bean через рефлексию.

Почему же рефлексию используют и предлагают к использованию, если это такая проблемная технология?

Вернемся к двум ее недостаткам:

1) не надо использовать рефлексию для вызова private методов или доступа к private полям. Если такая задача встала - у вас в самом деле проблемы с архитектурой

2) не надо использовать рефлексию часто и при этом в высоконагруженных приложениях. Тот же Spring использует рефлексию только при старте приложения для инициализации прокси и бинов. И к слову в т.ч. и поэтому старт Spring приложения может быть долгим, и люди с этим борются, см. мой цикл статей про ускорение старта #java_start_boost Более того, разработчикам Spring для поддержки native image пришлось серьезно допиливать его в т.ч. из-за динамических прокси и @Configuration https://docs.spring.io/spring-boot/reference/packaging/native-image/introducing-graalvm-native-images.html

Итого: рефлексию стоит рассматривать как возможность получить метаданные о классе. Помня при этом о производительности.

И если вопрос упирается в производительность - всегда есть альтернативы рефлексии. Это работа с байт-кодом не в runtime:
1) compile time (свой компилятор, см. статью про AspectJ)
2) post-compile time (свой плагин для сборки, см. Jandex для поиска аннотаций https://smallrye.io/jandex/jandex/3.2.2/index.html)
3) load-time (свой агент+classloader, см. статью про AspectJ)
Все варианты сложнее в реализации и подключении к проекту, зато вносят минимальное влияние в runtime.

P.S. Да, если при упоминании о динамических прокси вы вспомнили про задачку с собесов о вложенном @Transactional - это оно. И ответ на этот вопрос не так очевиден https://habr.com/ru/articles/347752/

#java #reflection #dev_compromises
Всем привет!

Продолжаю читать книгу "Эффективная работа с унаследованным кодом". Наткнулся на интересную мысль, на первый взгляд подтверждающую тезис: разработка - искусство компромиссов.

Мы все используем библиотеки. Когда нужно написать тест (а книга в основном про то, как упростить написание тестов для legacy) - часто в наш класс передаются библиотечные объекты. И тут могут быть две проблемы:
1) объект-синглтон
2) final объект или объект с методами, которые не возможно переопределить.
Эти две проблемы приводят к одному и тому же - мы не можем создать mock, приходится инициализировать для тестов реальный объект из библиотеки. А он может быть "тяжелым", превращающий модульный тест в интеграционный.

Как вариант решения этой проблемы предлагается:
1) для singleton создавать фасад, который разрешает замену объекта через setter, т.е. по сути нарушать суть паттерна singleton
2) для final методов и объектов - убрать final, объявляя их логическими final в документации.

Оба предложения по сути об одном - нарушаем принципы проектирования на уровне языка, зато делаем возможным тестирование кода.

В целом - "соль" в этом есть. Код без тестов опаснее кода, нарушающего принципы проектирования. Но я бы уточнил, что оба метода - это крайние меры. А по хорошему, если вы разрабатываете код, который кто-то когда-то будет тестировать - надо заранее озаботится о тестируемости, и именно:
1) не создавать singleton самому, использовать для этого IoC контейнер. Spring если библиотека внутренняя, и у вас используется Spring, или CDI аннотации в других случаях. Причем это актуально не только для разработчиков библиотек, а для всех.
2) создавать интерфейсы для классов, вынесенных в клиентское API. Есть интерфейс - всегда можно создать mock в тесте без всяких ухищрений. Я против создания интерфейсов всегда и везде https://t.me/javaKotlinDevOps/235, но Java API - это как раз подходящий случай. Одних интерфейсов конечно же мало, нужно еще и четкое разделение на модель и сервисы. Первые можно использоваться AS IS в тестах, вторые часто приходится мокать. Да, спроектировать все правильно не так-то легко, но как говорится - дорогу осилит идущий.

#book_review #ood #dev_compromises #libraries
Всем привет!

Прочитал сегодня хороший пост (английский): https://korshakov.com/posts/death-of-best-practices

Чем же он хорош?
Иллюстрирует 2 мысли, про которые я топлю в своем блоге (и топлю в целом):

1) разработка - искусство компромиссов. Важно не абсолютное следование ... микросервисной архитектуре, принципам Single Responsibility или Dependency Inversion. Нет никакой магии в цифре 80% когда мы говорим о покрытии кода тестами. Денормализация таблиц из той же оперы. Важно выдавать результат, требуемый бизнесов. На код-ревью можно поспорить о принципах, но Pull Request должен быть влит в течение дня

2) быстрые, а следовательно частые релизы - наше все. Или по-менеджерски - Deployment Frequency и Lead Time (а это две грани одной и той же идеи). Это позволяет быстро править баги и уязвимости, адаптироваться к изменениям архитектуры и нормативным требованиям, проводить бета и A\B тестирование, соблюдать сроки выхода фичей.

Что спорно в посте - кликбейтный заголовок. Читать "Чистый код" или "Мифический человеко-месяц" - это не зло. Зло - следовать догматически отдельным идеям из этих книг, не разбираясь, что хотел сказать автор, и не адаптируя их к текущему проекту.

P.S. Тоже что ли кликбейтные заголовки начать делать)

#principles #dev_compomisses