(java || kotlin) && devOps
369 subscribers
6 photos
1 video
6 files
306 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Я долго держался, но не написать о Deepseek всё же не смог)

Что хотелось бы отметить:
1) Модели уже больше года, а в январе стали известны (распиарены) результаты её последней версии

2) Начиналось всё с модели для разработчиков, называется Coder, потом был Coder v2

3) Тренд на универсализацию моделей продолжается, сейчас Coder недоступен на официальном сайте, только основная модель

4) В окне ввода промпта можно включить объяснение логики получения ответа — и это новый тренд. По сути это данные аудита. В применении к AI-агенту — данные будут храниться определённое время для разбора полётов

5) И последняя фича DeepSeek — возможность AI-поиска, уже не тренд, а скорее становится базовым требованием

6) Разработчики Deepseek связаны с алгоритмическим трейдингом. С одной стороны, это деньги на разработку модели и железо, с другой — источник знаний для оптимизации модели. В алгоритмическом трейдинге решают миллисекунды

7) Ну и наконец — «я же говорил».
Пост про сравнение AI-моделей: https://t.me/javaKotlinDevOps/331. Единственный момент — тогда мне больше понравилась Perplexity. Надо будет сравнить ещё раз)

8) В Perplexity уже встроили модель Deepseek как один из вариантов

9) Deepseek можно развернуть локально, см. инструкцию https://habr.com/ru/articles/878276/. Т. е., в open source выложили всю модель. Удивляют системные требования

10) Ходят слухи, что Deepseek будут внедрять и в одной крупной российской ИТ-компании.

#llm #ai
Всем привет!

AI быстро развивается, интегрируется с традиционным ПО и было бы странно, если бы и для AI не появились ... свои паттерны)
Встречаем, от одного из лучших специалистов по паттернам: https://martinfowler.com/articles/gen-ai-patterns/

Маленький комментарий: да, AI паттерны могут показаться элементарными, но свою роль они выполняют - это некий язык, кубики, из которых строится архитектура приложения/корпоративная архитектура.
Еще хорошо написано про такую важную штуку как оценка (eval). Ведь модели не идемпотентны - могут менять свой ответ на одних и тех же входных данных. А значит традиционные практики тестирования не подходят. Модель тестирующая сама себя - прямой путь к скайнету) А вот если взять другую модель, а для страховки отдать результат на проверку человеком...

#llm #ai #testing #patterns
Всем привет!

Протестировал последнюю версию GigaCode, доступную наружу, небольшой итог.

Что понравилось:
1) неплохо генерирует тесты, подбирает разные входные данные для попадания в разные ветки алгоритма. Не уверен, что полнота покрытия 100%, но неплохо
2) генерирует каркас для Spring приложения - контроллер, сервис, адаптер. Да, AI генерация рулит.
3) можно использовать для подключения новых библиотек по имени класса. Единственный минус - подставляет не последние версии
4) может заменить все println на вызов логгера в файле
5) GigaCode научился работать с контекстом всего проекта, а не только открытых файлов. По факту: на больших проектах не тестировал, но на малых все равно делает ошибки - в autocomplete предлагает несуществующий метод. Похоже имя метода генерируется как производная от названия переменной, в которую сохраняется результат вызова) К слову, встроенный в IDEA бесплатный AI делает ровно те же ошибки. Нужен ретест, но в любом случае это движение в правильном направлении.
6) находит ошибки при вызове /improve. Не все, на моем тестовом файле с порядка 50 ошибками нашел 4. Уже что-то. Предложил использовать try-with-resources, конкатенацию строк заменить на StringBuilder, также нашел проглатывание ошибки без логирования и некорректное удаление в цикле. Также умеет удалять дублирующиеся методы. Но не умеет выносить повторяющийся код в отдельный метод.
7) вызов /review - тут уже интереснее. Я вызывал его до /improve и после. На первом ревью модель нашла отличающийся по сравнению с improve набор проблем. Понятно, для некоторых из них простого фикса нет, но например найденный на ревью возврат null можно было бы пофиксить на improve. Еще интереснее прошло ревью после применения улучшений. Модель поставила под сомнение использование try-with-resources и StringBuilder сказав, что "в данном случае это не имеет большого значения, так как количество строк в файле, вероятно, не очень велико". Как она поняла, что данных мало - непонятно) Вообще говоря, замечание справедливо, в разработке очень редко можно дать однозначный ответ без уточнения деталей. Но как будто бы пропущен вопрос - с каким объемом данных мы работаем? Аналогично, про правку при удалении в цикле - уменьшение счетчика, сказала, что он затрудняет читаемость и может привести к ошибкам. Т.е. 3 из 4 собственных правок под вопросом) Еще модель выдала неверное замечание про то, что try-catch приводит к созданию объекта исключения, хотя по факту он возникает в библиотечном коде, который вызывается внутри try-catch

И три недостатка:
1) команда /doc Да, она хорошо генерирует JavaDoc по названию и содержанию метода. И да, есть такое правило в SonarQube. Но я считаю, что правило обязательных JavaDoc надо отключать, методы, переменные и классы называть осмысленно, и только в отдельных сложных случаях добавлять JavaDoc. Видимо сделано для ленивых программистов)
2) кэширование. Тестируя /review и /improve на изменяющемся файле постоянно сталкиваюсь с тем, что ошибка уже поправлена, а модель все еще ругается на нее. Да, для review помогает ctrl+enter, непонятно зачем на обновление контекста нужно отдельное сочетание клавиш. А improve по-прежнему пытается исправить уже исправленные ошибки)
3) для improve напрашивается кнопка "заменить", т.к. сейчас приходится выделять все и жать на insert

Вывод - в целом использовать можно.

#llm #ai #gigacode
Не Spring-ом единым...

Появилась еще одна библиотека для Java для работы с LLM, а точнее конкретно с OpenAI. Официальная, от OpenAI
<dependency>
<groupId>com.openai</groupId>
<artifactId>openai-java</artifactId>
<version>0.22.0</version>
</dependency>

На что хотелось бы обратить внимание:
1) OpenAI наконец то "дошла" до Java разработчиков
2) Разработчики библиотеки очень любят method chaining (ссылка на статью с примерами в конце поста). Со стороны даже кажется, что череcчур, можно было бы и по-короче инициализировать библиотеку
3) есть поддержка web-поиска
4) есть неочевидное разделение на Completion API - простые вопросы к LLM, типа "как на Java получить список файлов в каталоге" и Assistants API - "напиши мне микросервис, возвращающий курсы акций на бирже". Почему неочевидное - в моделях я вижу обратную тенденцию к унификации, когда одна модель используется для всех типов задач.
5) Assistants API умеет в File Search и Code Interpreter

И небольшой каталог решений по работе с LLM на Java:

1) Spring AI - https://docs.spring.io/spring-ai/reference
Примеры использования:
hello world https://habr.com/ru/articles/784128/
Более сложные примеры
https://piotrminkowski.com/2025/01/28/getting-started-with-spring-ai-and-chat-model/
https://piotrminkowski.com/2025/01/30/getting-started-with-spring-ai-function-calling/
Telegram bot, OpenAI и Spring AI https://habr.com/ru/companies/dockhost/articles/884876/

2) langchain4j https://github.com/langchain4j/langchain4j Характерно, что проект сделан на основе одноименной Python библиотеки. Поддерживается в Quarkus https://www.baeldung.com/java-quarkus-langchain4j

3) прямая интеграция с OpenAI https://www.baeldung.com/java-openai-api-client

P.S. Возможно Assistants API "жрет" больше токенов, отсюда и разделение

#llm #openai #ai #spring