Всем привет!
Я долго держался, но не написать о Deepseek всё же не смог)
Что хотелось бы отметить:
1) Модели уже больше года, а в январе стали известны (распиарены) результаты её последней версии
2) Начиналось всё с модели для разработчиков, называется Coder, потом был Coder v2
3) Тренд на универсализацию моделей продолжается, сейчас Coder недоступен на официальном сайте, только основная модель
4) В окне ввода промпта можно включить объяснение логики получения ответа — и это новый тренд. По сути это данные аудита. В применении к AI-агенту — данные будут храниться определённое время для разбора полётов
5) И последняя фича DeepSeek — возможность AI-поиска, уже не тренд, а скорее становится базовым требованием
6) Разработчики Deepseek связаны с алгоритмическим трейдингом. С одной стороны, это деньги на разработку модели и железо, с другой — источник знаний для оптимизации модели. В алгоритмическом трейдинге решают миллисекунды
7) Ну и наконец — «я же говорил».
Пост про сравнение AI-моделей: https://t.me/javaKotlinDevOps/331. Единственный момент — тогда мне больше понравилась Perplexity. Надо будет сравнить ещё раз)
8) В Perplexity уже встроили модель Deepseek как один из вариантов
9) Deepseek можно развернуть локально, см. инструкцию https://habr.com/ru/articles/878276/. Т. е., в open source выложили всю модель. Удивляют системные требования
10) Ходят слухи, что Deepseek будут внедрять и в одной крупной российской ИТ-компании.
#llm #ai
Я долго держался, но не написать о Deepseek всё же не смог)
Что хотелось бы отметить:
1) Модели уже больше года, а в январе стали известны (распиарены) результаты её последней версии
2) Начиналось всё с модели для разработчиков, называется Coder, потом был Coder v2
3) Тренд на универсализацию моделей продолжается, сейчас Coder недоступен на официальном сайте, только основная модель
4) В окне ввода промпта можно включить объяснение логики получения ответа — и это новый тренд. По сути это данные аудита. В применении к AI-агенту — данные будут храниться определённое время для разбора полётов
5) И последняя фича DeepSeek — возможность AI-поиска, уже не тренд, а скорее становится базовым требованием
6) Разработчики Deepseek связаны с алгоритмическим трейдингом. С одной стороны, это деньги на разработку модели и железо, с другой — источник знаний для оптимизации модели. В алгоритмическом трейдинге решают миллисекунды
7) Ну и наконец — «я же говорил».
Пост про сравнение AI-моделей: https://t.me/javaKotlinDevOps/331. Единственный момент — тогда мне больше понравилась Perplexity. Надо будет сравнить ещё раз)
8) В Perplexity уже встроили модель Deepseek как один из вариантов
9) Deepseek можно развернуть локально, см. инструкцию https://habr.com/ru/articles/878276/. Т. е., в open source выложили всю модель. Удивляют системные требования
10) Ходят слухи, что Deepseek будут внедрять и в одной крупной российской ИТ-компании.
#llm #ai
Telegram
(java || kotlin) && devOps
Всем привет!
Запилил небольшое сравнение AI чатов для задач разработки.
https://gitverse.ru/javadev/ai-tools-comparision/content/master/README.md
Почему в Git - потому что там есть полноценный Markdown и таблицы.
Фокус на бесплатных инструментах - для тех…
Запилил небольшое сравнение AI чатов для задач разработки.
https://gitverse.ru/javadev/ai-tools-comparision/content/master/README.md
Почему в Git - потому что там есть полноценный Markdown и таблицы.
Фокус на бесплатных инструментах - для тех…
👍5
Всем привет!
AI быстро развивается, интегрируется с традиционным ПО и было бы странно, если бы и для AI не появились ... свои паттерны)
Встречаем, от одного из лучших специалистов по паттернам: https://martinfowler.com/articles/gen-ai-patterns/
Маленький комментарий: да, AI паттерны могут показаться элементарными, но свою роль они выполняют - это некий язык, кубики, из которых строится архитектура приложения/корпоративная архитектура.
Еще хорошо написано про такую важную штуку как оценка (eval). Ведь модели не идемпотентны - могут менять свой ответ на одних и тех же входных данных. А значит традиционные практики тестирования не подходят. Модель тестирующая сама себя - прямой путь к скайнету) А вот если взять другую модель, а для страховки отдать результат на проверку человеком...
#llm #ai #testing #patterns
AI быстро развивается, интегрируется с традиционным ПО и было бы странно, если бы и для AI не появились ... свои паттерны)
Встречаем, от одного из лучших специалистов по паттернам: https://martinfowler.com/articles/gen-ai-patterns/
Маленький комментарий: да, AI паттерны могут показаться элементарными, но свою роль они выполняют - это некий язык, кубики, из которых строится архитектура приложения/корпоративная архитектура.
Еще хорошо написано про такую важную штуку как оценка (eval). Ведь модели не идемпотентны - могут менять свой ответ на одних и тех же входных данных. А значит традиционные практики тестирования не подходят. Модель тестирующая сама себя - прямой путь к скайнету) А вот если взять другую модель, а для страховки отдать результат на проверку человеком...
#llm #ai #testing #patterns
martinfowler.com
Emerging Patterns in Building GenAI Products
Patterns from our colleagues' work building with Generative AI
👍2
Всем привет!
Протестировал последнюю версию GigaCode, доступную наружу, небольшой итог.
Что понравилось:
1) неплохо генерирует тесты, подбирает разные входные данные для попадания в разные ветки алгоритма. Не уверен, что полнота покрытия 100%, но неплохо
2) генерирует каркас для Spring приложения - контроллер, сервис, адаптер. Да, AI генерация рулит.
3) можно использовать для подключения новых библиотек по имени класса. Единственный минус - подставляет не последние версии
4) может заменить все println на вызов логгера в файле
5) GigaCode научился работать с контекстом всего проекта, а не только открытых файлов. По факту: на больших проектах не тестировал, но на малых все равно делает ошибки - в autocomplete предлагает несуществующий метод. Похоже имя метода генерируется как производная от названия переменной, в которую сохраняется результат вызова) К слову, встроенный в IDEA бесплатный AI делает ровно те же ошибки. Нужен ретест, но в любом случае это движение в правильном направлении.
6) находит ошибки при вызове /improve. Не все, на моем тестовом файле с порядка 50 ошибками нашел 4. Уже что-то. Предложил использовать try-with-resources, конкатенацию строк заменить на StringBuilder, также нашел проглатывание ошибки без логирования и некорректное удаление в цикле. Также умеет удалять дублирующиеся методы. Но не умеет выносить повторяющийся код в отдельный метод.
7) вызов /review - тут уже интереснее. Я вызывал его до /improve и после. На первом ревью модель нашла отличающийся по сравнению с improve набор проблем. Понятно, для некоторых из них простого фикса нет, но например найденный на ревью возврат null можно было бы пофиксить на improve. Еще интереснее прошло ревью после применения улучшений. Модель поставила под сомнение использование try-with-resources и StringBuilder сказав, что "в данном случае это не имеет большого значения, так как количество строк в файле, вероятно, не очень велико". Как она поняла, что данных мало - непонятно) Вообще говоря, замечание справедливо, в разработке очень редко можно дать однозначный ответ без уточнения деталей. Но как будто бы пропущен вопрос - с каким объемом данных мы работаем? Аналогично, про правку при удалении в цикле - уменьшение счетчика, сказала, что он затрудняет читаемость и может привести к ошибкам. Т.е. 3 из 4 собственных правок под вопросом) Еще модель выдала неверное замечание про то, что try-catch приводит к созданию объекта исключения, хотя по факту он возникает в библиотечном коде, который вызывается внутри try-catch
И три недостатка:
1) команда /doc Да, она хорошо генерирует JavaDoc по названию и содержанию метода. И да, есть такое правило в SonarQube. Но я считаю, что правило обязательных JavaDoc надо отключать, методы, переменные и классы называть осмысленно, и только в отдельных сложных случаях добавлять JavaDoc. Видимо сделано для ленивых программистов)
2) кэширование. Тестируя /review и /improve на изменяющемся файле постоянно сталкиваюсь с тем, что ошибка уже поправлена, а модель все еще ругается на нее. Да, для review помогает ctrl+enter, непонятно зачем на обновление контекста нужно отдельное сочетание клавиш. А improve по-прежнему пытается исправить уже исправленные ошибки)
3) для improve напрашивается кнопка "заменить", т.к. сейчас приходится выделять все и жать на insert
Вывод - в целом использовать можно.
#llm #ai #gigacode
Протестировал последнюю версию GigaCode, доступную наружу, небольшой итог.
Что понравилось:
1) неплохо генерирует тесты, подбирает разные входные данные для попадания в разные ветки алгоритма. Не уверен, что полнота покрытия 100%, но неплохо
2) генерирует каркас для Spring приложения - контроллер, сервис, адаптер. Да, AI генерация рулит.
3) можно использовать для подключения новых библиотек по имени класса. Единственный минус - подставляет не последние версии
4) может заменить все println на вызов логгера в файле
5) GigaCode научился работать с контекстом всего проекта, а не только открытых файлов. По факту: на больших проектах не тестировал, но на малых все равно делает ошибки - в autocomplete предлагает несуществующий метод. Похоже имя метода генерируется как производная от названия переменной, в которую сохраняется результат вызова) К слову, встроенный в IDEA бесплатный AI делает ровно те же ошибки. Нужен ретест, но в любом случае это движение в правильном направлении.
6) находит ошибки при вызове /improve. Не все, на моем тестовом файле с порядка 50 ошибками нашел 4. Уже что-то. Предложил использовать try-with-resources, конкатенацию строк заменить на StringBuilder, также нашел проглатывание ошибки без логирования и некорректное удаление в цикле. Также умеет удалять дублирующиеся методы. Но не умеет выносить повторяющийся код в отдельный метод.
7) вызов /review - тут уже интереснее. Я вызывал его до /improve и после. На первом ревью модель нашла отличающийся по сравнению с improve набор проблем. Понятно, для некоторых из них простого фикса нет, но например найденный на ревью возврат null можно было бы пофиксить на improve. Еще интереснее прошло ревью после применения улучшений. Модель поставила под сомнение использование try-with-resources и StringBuilder сказав, что "в данном случае это не имеет большого значения, так как количество строк в файле, вероятно, не очень велико". Как она поняла, что данных мало - непонятно) Вообще говоря, замечание справедливо, в разработке очень редко можно дать однозначный ответ без уточнения деталей. Но как будто бы пропущен вопрос - с каким объемом данных мы работаем? Аналогично, про правку при удалении в цикле - уменьшение счетчика, сказала, что он затрудняет читаемость и может привести к ошибкам. Т.е. 3 из 4 собственных правок под вопросом) Еще модель выдала неверное замечание про то, что try-catch приводит к созданию объекта исключения, хотя по факту он возникает в библиотечном коде, который вызывается внутри try-catch
И три недостатка:
1) команда /doc Да, она хорошо генерирует JavaDoc по названию и содержанию метода. И да, есть такое правило в SonarQube. Но я считаю, что правило обязательных JavaDoc надо отключать, методы, переменные и классы называть осмысленно, и только в отдельных сложных случаях добавлять JavaDoc. Видимо сделано для ленивых программистов)
2) кэширование. Тестируя /review и /improve на изменяющемся файле постоянно сталкиваюсь с тем, что ошибка уже поправлена, а модель все еще ругается на нее. Да, для review помогает ctrl+enter, непонятно зачем на обновление контекста нужно отдельное сочетание клавиш. А improve по-прежнему пытается исправить уже исправленные ошибки)
3) для improve напрашивается кнопка "заменить", т.к. сейчас приходится выделять все и жать на insert
Вывод - в целом использовать можно.
#llm #ai #gigacode
👍1👌1
Не Spring-ом единым...
Появилась еще одна библиотека для Java для работы с LLM, а точнее конкретно с OpenAI. Официальная, от OpenAI
<dependency>
<groupId>com.openai</groupId>
<artifactId>openai-java</artifactId>
<version>0.22.0</version>
</dependency>
На что хотелось бы обратить внимание:
1) OpenAI наконец то "дошла" до Java разработчиков
2) Разработчики библиотеки очень любят method chaining (ссылка на статью с примерами в конце поста). Со стороны даже кажется, что череcчур, можно было бы и по-короче инициализировать библиотеку
3) есть поддержка web-поиска
4) есть неочевидное разделение на Completion API - простые вопросы к LLM, типа "как на Java получить список файлов в каталоге" и Assistants API - "напиши мне микросервис, возвращающий курсы акций на бирже". Почему неочевидное - в моделях я вижу обратную тенденцию к унификации, когда одна модель используется для всех типов задач.
5) Assistants API умеет в File Search и Code Interpreter
И небольшой каталог решений по работе с LLM на Java:
1) Spring AI - https://docs.spring.io/spring-ai/reference
Примеры использования:
hello world https://habr.com/ru/articles/784128/
Более сложные примеры
https://piotrminkowski.com/2025/01/28/getting-started-with-spring-ai-and-chat-model/
https://piotrminkowski.com/2025/01/30/getting-started-with-spring-ai-function-calling/
Telegram bot, OpenAI и Spring AI https://habr.com/ru/companies/dockhost/articles/884876/
2) langchain4j https://github.com/langchain4j/langchain4j Характерно, что проект сделан на основе одноименной Python библиотеки. Поддерживается в Quarkus https://www.baeldung.com/java-quarkus-langchain4j
3) прямая интеграция с OpenAI https://www.baeldung.com/java-openai-api-client
P.S. Возможно Assistants API "жрет" больше токенов, отсюда и разделение
#llm #openai #ai #spring
Появилась еще одна библиотека для Java для работы с LLM, а точнее конкретно с OpenAI. Официальная, от OpenAI
<dependency>
<groupId>com.openai</groupId>
<artifactId>openai-java</artifactId>
<version>0.22.0</version>
</dependency>
На что хотелось бы обратить внимание:
1) OpenAI наконец то "дошла" до Java разработчиков
2) Разработчики библиотеки очень любят method chaining (ссылка на статью с примерами в конце поста). Со стороны даже кажется, что череcчур, можно было бы и по-короче инициализировать библиотеку
3) есть поддержка web-поиска
4) есть неочевидное разделение на Completion API - простые вопросы к LLM, типа "как на Java получить список файлов в каталоге" и Assistants API - "напиши мне микросервис, возвращающий курсы акций на бирже". Почему неочевидное - в моделях я вижу обратную тенденцию к унификации, когда одна модель используется для всех типов задач.
5) Assistants API умеет в File Search и Code Interpreter
И небольшой каталог решений по работе с LLM на Java:
1) Spring AI - https://docs.spring.io/spring-ai/reference
Примеры использования:
hello world https://habr.com/ru/articles/784128/
Более сложные примеры
https://piotrminkowski.com/2025/01/28/getting-started-with-spring-ai-and-chat-model/
https://piotrminkowski.com/2025/01/30/getting-started-with-spring-ai-function-calling/
Telegram bot, OpenAI и Spring AI https://habr.com/ru/companies/dockhost/articles/884876/
2) langchain4j https://github.com/langchain4j/langchain4j Характерно, что проект сделан на основе одноименной Python библиотеки. Поддерживается в Quarkus https://www.baeldung.com/java-quarkus-langchain4j
3) прямая интеграция с OpenAI https://www.baeldung.com/java-openai-api-client
P.S. Возможно Assistants API "жрет" больше токенов, отсюда и разделение
#llm #openai #ai #spring
Хабр
ChatGPT на Java. Пишем «Hello World» на Spring AI
В преддверии Нового Года, начинаем осваивать генеративные сети с помощью привычного всем Java разработчикам фреймворка Spring. Несколько месяцев назад в Spring добавили модуль AI , который упрощает...
❤🔥1
AI на практике или учимся читать с помощью AI)
Вот есть неплохая статья - введение в тему работы с ElasticSearch и JPA на Java+Spring https://habr.com/ru/companies/rostelecom/articles/851658/
Всем она хороша, кроме одного - 1700 строк, 120 кб текста, время для чтения - 41 минута. И как нетрудно догадаться - статья покрывает все основные темы по поиску с помощью Elasticsearch, но там прям много воды. Может автору за символы платят, хз)
Но повторюсь по сути все ок.
И тут казалось бы - вот звездный час AI. Тем более они теперь с интернетом дружат.
Скормил статью разным AI чатам, попросил сократить, сохранив код, основные классификации и описания атрибутов.
Итоги такие:
0) вне конкурса - пересказ в браузере Яндекс. Сокращает - отлично, но очень тезисно получается, ничего не понятно. Незачет
1) YaGPT - сказал, что не умеет, отправил на внешние сайты. Незачет
2) DeepSeek - полное фиаско. Во-первых забавный факт - когда я забыл отжать галочку: "искать в вебе" - модель стала пересказывать какую-то левую статью про работу с LLM. Включил галочку - модель увидела в ссылке слово rostelecom и стала пересказывать тарифы оператора. Ок, включаю режим рассуждений. Снова мимо, причем с дико странной формулировкой: "Мы не можем напрямую загрузить и обработать веб-страницу, но я могу вспомнить или найти ключевые моменты статьи, основываясь на ее содержании, если я с ней знаком." И далее снова левая статья и ее пересказ. В общем No comments, не пересказ - не конек DeepSeek
3) GigaChat - пересказал всю статью, сильно лучше Яндекс браузера, но потом пошли глюки. В первой версии пересказа был только код, почти без текста. Непонятно. Попросил добавить текста - исчез весь код. Попросил совместить - начал придумывать какие-то левые классы, т.е. потерял контекст. Еще работает медленно. Незачет
4) Perplexity - в целом неплохо пересказал с первого раза. Но - потерял последнюю треть документа - похоже на оптимизацию. Добавил недостающее после указания конкретных глав. Если просишь добавить без конкретики какие главы пропущены - все равно пропускает. Причем чем больше просишь - тем компактнее становится итоговый текст, т.е. видно, что модель экономит контекст. Еще минусы:
а) переставляет местами главы, причем не релевантно смыслу.
б) оставляет мало текста, приходится просить добавлять текстовые описания для атрибутов и вариантов реализации
5) Mistral - примерно все тоже самое, только в первой версии пересказа вообще практически не было текста, только код. Хотя просил я другое. После просьбы добавить текста - добавил. В остальном работает также, как Perplexity, с теми же минусами
Вывод: похоже с первого раза выдать нормальный пересказ большой статьи современные LLM не могут. И это даже не книга. Причина в оптимизации из-за ограниченного контекста. Но в режиме переписки работать можно.
P.S. И статья на 120 кб - это конечно перебор) Я люблю читать - но все равно перебор)
#ai #llm #elasticsearch #java #spring
Вот есть неплохая статья - введение в тему работы с ElasticSearch и JPA на Java+Spring https://habr.com/ru/companies/rostelecom/articles/851658/
Всем она хороша, кроме одного - 1700 строк, 120 кб текста, время для чтения - 41 минута. И как нетрудно догадаться - статья покрывает все основные темы по поиску с помощью Elasticsearch, но там прям много воды. Может автору за символы платят, хз)
Но повторюсь по сути все ок.
И тут казалось бы - вот звездный час AI. Тем более они теперь с интернетом дружат.
Скормил статью разным AI чатам, попросил сократить, сохранив код, основные классификации и описания атрибутов.
Итоги такие:
0) вне конкурса - пересказ в браузере Яндекс. Сокращает - отлично, но очень тезисно получается, ничего не понятно. Незачет
1) YaGPT - сказал, что не умеет, отправил на внешние сайты. Незачет
2) DeepSeek - полное фиаско. Во-первых забавный факт - когда я забыл отжать галочку: "искать в вебе" - модель стала пересказывать какую-то левую статью про работу с LLM. Включил галочку - модель увидела в ссылке слово rostelecom и стала пересказывать тарифы оператора. Ок, включаю режим рассуждений. Снова мимо, причем с дико странной формулировкой: "Мы не можем напрямую загрузить и обработать веб-страницу, но я могу вспомнить или найти ключевые моменты статьи, основываясь на ее содержании, если я с ней знаком." И далее снова левая статья и ее пересказ. В общем No comments, не пересказ - не конек DeepSeek
3) GigaChat - пересказал всю статью, сильно лучше Яндекс браузера, но потом пошли глюки. В первой версии пересказа был только код, почти без текста. Непонятно. Попросил добавить текста - исчез весь код. Попросил совместить - начал придумывать какие-то левые классы, т.е. потерял контекст. Еще работает медленно. Незачет
4) Perplexity - в целом неплохо пересказал с первого раза. Но - потерял последнюю треть документа - похоже на оптимизацию. Добавил недостающее после указания конкретных глав. Если просишь добавить без конкретики какие главы пропущены - все равно пропускает. Причем чем больше просишь - тем компактнее становится итоговый текст, т.е. видно, что модель экономит контекст. Еще минусы:
а) переставляет местами главы, причем не релевантно смыслу.
б) оставляет мало текста, приходится просить добавлять текстовые описания для атрибутов и вариантов реализации
5) Mistral - примерно все тоже самое, только в первой версии пересказа вообще практически не было текста, только код. Хотя просил я другое. После просьбы добавить текста - добавил. В остальном работает также, как Perplexity, с теми же минусами
Вывод: похоже с первого раза выдать нормальный пересказ большой статьи современные LLM не могут. И это даже не книга. Причина в оптимизации из-за ограниченного контекста. Но в режиме переписки работать можно.
P.S. И статья на 120 кб - это конечно перебор) Я люблю читать - но все равно перебор)
#ai #llm #elasticsearch #java #spring
Хабр
Полнотекстовый поиск в java приложениях с помощью Elasticsearch
Введение В современном мире объёмы данных растут экспоненциально, и эффективное управление информацией становится критически важным для успеха любого приложения. Полнотекстовый поиск играет ключевую...
Борьба с длинной контекста
Два поста назад я проводил эксперимент с LLM - пытался прочитать статью быстрее, скормив ее AI и попросив пересказать.
Ни одна из протестированных моделей с этим не справилась с первого раза, в лучшем случае приходилось подсказывать с указанием пропущенных при пересказе частей.
И я уверен, что причиной является ограниченность контекста модели.
Есть ли тут выход?
Но во-первых очевидный - линейное увеличение размера контекста модели.
Но есть и менее тяжелый с точки зрения железа вариант.
Совместить LLM c RAG.
Документ, или набор документов загружается в RAG. Это фаза анализа.
Далее можно задавать вопросы по загруженному контенту.
Можно даже базовые вопросы вынести в UI - сформируй оглавление, перескажи...
Основной "прикол" такой архитектуры - данные хранятся не в контексте, а в RAG-е, не вытесняются из него с новыми запрсоами.
А при запросе пользователя вначале производится "поиск" в RAG и обогащение контекста, далее - запрос к LLM модели. Самое главное - при этом передается только часть содержимого RAG.
Инструментов с такой архитектурой много, вот здесь проведено небольшое исследование https://dzen.ru/a/Zu8KfXtWcUk-ngpo?ysclid=mczw93o1xo25962418
Причем есть и локальные версии, где на сервер "к дяде" ничего не передается.
Я же попробовал скормить ту же статью NotebookLM (статья общедоступная, решил не заморачиваться).
И результат был существенно лучше: я с первого раза получил полный пересказ без пропусков глав в том же порядке, как и в исходной статье.
Но не идеален - в статье много кода, и весь код уехал в сноски. В целом подход нормальный для всех, кроме разработчиков(
Как заставить NotebookLM не прятать код под сноски - не нашел( Возможно, не был достаточно убедителен) Возможно - системные промты сильнее)
Кажется это был бы последний штрих для идеального инструмента...
#ai #llm #rag
Два поста назад я проводил эксперимент с LLM - пытался прочитать статью быстрее, скормив ее AI и попросив пересказать.
Ни одна из протестированных моделей с этим не справилась с первого раза, в лучшем случае приходилось подсказывать с указанием пропущенных при пересказе частей.
И я уверен, что причиной является ограниченность контекста модели.
Есть ли тут выход?
Но во-первых очевидный - линейное увеличение размера контекста модели.
Но есть и менее тяжелый с точки зрения железа вариант.
Совместить LLM c RAG.
Документ, или набор документов загружается в RAG. Это фаза анализа.
Далее можно задавать вопросы по загруженному контенту.
Можно даже базовые вопросы вынести в UI - сформируй оглавление, перескажи...
Основной "прикол" такой архитектуры - данные хранятся не в контексте, а в RAG-е, не вытесняются из него с новыми запрсоами.
А при запросе пользователя вначале производится "поиск" в RAG и обогащение контекста, далее - запрос к LLM модели. Самое главное - при этом передается только часть содержимого RAG.
Инструментов с такой архитектурой много, вот здесь проведено небольшое исследование https://dzen.ru/a/Zu8KfXtWcUk-ngpo?ysclid=mczw93o1xo25962418
Причем есть и локальные версии, где на сервер "к дяде" ничего не передается.
Я же попробовал скормить ту же статью NotebookLM (статья общедоступная, решил не заморачиваться).
И результат был существенно лучше: я с первого раза получил полный пересказ без пропусков глав в том же порядке, как и в исходной статье.
Но не идеален - в статье много кода, и весь код уехал в сноски. В целом подход нормальный для всех, кроме разработчиков(
Как заставить NotebookLM не прятать код под сноски - не нашел( Возможно, не был достаточно убедителен) Возможно - системные промты сильнее)
Кажется это был бы последний штрих для идеального инструмента...
#ai #llm #rag
Дзен | Статьи
AnythingLLM или локальный RAG c человеческим интерфейсом
Статья автора «Нейрошторм» в Дзене ✍: Ниже поговорим о том, как более практично использовать нейросети.
👍1
Что станет с языками программирования?
Недавно на одной AI конференции услышал две довольно радикальные мысли.
1) программирование на высокоуровневых языках исчезнет повторив судьбу ассемблера. Останутся только архитекторы.
2) если модели не нравится ваш код - в смысле она не может его доработать - значит проблема в коде
Вот мои мысли по этому поводу.
1) Эти два утверждения работают только вместе. Т.е. если LLM модель пишет код, то он стандартизирован. И тогда любой нестандартный код - плохой. Т.к. он нарушает code style. Назовем его AI code style. И потому что раз уж мы отдали писать код модели - не надо ей мешать
2) С одной стороны аналогия с заменой ассемблера языками высокого уровня красива. И некие аналогии тут есть. Скорость разработки в теории может так же ускориться. Сложность систем, которые можно разработать, вырастет. А запрос как на повышение скорости разработки, так и на создание все более сложных систем, есть. Да, программирование на LLM - это тоже переход на более высокий уровень
3) Где аналогия хромает? Что общего у ассемблера и Java. Оба они детерминированы. Как и разработка в целом. Да, у нас есть место случайности, но она сосредоточена в нескольких местах - реализация функции random, генерация уникальных идентификаторов приходят на ум. А LLM принципиально недетермирована. Использование недетермированной машины для выполнения детерминированного процесса - ну такое себе.
4) Программирование уже пытались убрать из процесса разработки коммерческого ПО. Вот сейчас появилось много AI платформ для no code (low code) разработки. Знакомые же слова. Я про "no code". Да, BPMN системы. И различные проприетарные low code платформы. Свою ниши они заняли, но эти ниши достаточно узкие. Tilda самый очевидный пример. Но если говорить о глобальной замене программирования и программистов - не взлетело
Что думаете по этому поводу?
#ai #llm #lang
Недавно на одной AI конференции услышал две довольно радикальные мысли.
1) программирование на высокоуровневых языках исчезнет повторив судьбу ассемблера. Останутся только архитекторы.
2) если модели не нравится ваш код - в смысле она не может его доработать - значит проблема в коде
Вот мои мысли по этому поводу.
1) Эти два утверждения работают только вместе. Т.е. если LLM модель пишет код, то он стандартизирован. И тогда любой нестандартный код - плохой. Т.к. он нарушает code style. Назовем его AI code style. И потому что раз уж мы отдали писать код модели - не надо ей мешать
2) С одной стороны аналогия с заменой ассемблера языками высокого уровня красива. И некие аналогии тут есть. Скорость разработки в теории может так же ускориться. Сложность систем, которые можно разработать, вырастет. А запрос как на повышение скорости разработки, так и на создание все более сложных систем, есть. Да, программирование на LLM - это тоже переход на более высокий уровень
3) Где аналогия хромает? Что общего у ассемблера и Java. Оба они детерминированы. Как и разработка в целом. Да, у нас есть место случайности, но она сосредоточена в нескольких местах - реализация функции random, генерация уникальных идентификаторов приходят на ум. А LLM принципиально недетермирована. Использование недетермированной машины для выполнения детерминированного процесса - ну такое себе.
4) Программирование уже пытались убрать из процесса разработки коммерческого ПО. Вот сейчас появилось много AI платформ для no code (low code) разработки. Знакомые же слова. Я про "no code". Да, BPMN системы. И различные проприетарные low code платформы. Свою ниши они заняли, но эти ниши достаточно узкие. Tilda самый очевидный пример. Но если говорить о глобальной замене программирования и программистов - не взлетело
Что думаете по этому поводу?
#ai #llm #lang
👍1🔥1