(java || kotlin) && devOps
369 subscribers
6 photos
1 video
6 files
307 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Ну и еще одна оптимизация времени старта Java приложения. Самые внимательные уже могли ее заметить пройдя по ссылкам из предыдущего поста.

С момента появления Spring Boot упаковка приложения в fat jar - jar содержащий все зависимости и Tomcat в придачу (или другой контейнер сервлетов) - стала неким стандартом.
Но fat jar при исполнении требуется распаковать. А разархивация всегда требовала времени, не зря архиваторы используются как бенчмарки для процессорных тестов.

Соответственно, можно заранее разложить зависимости по отдельным файлам для ускорения старта. Вот как рекомендует это делать Spring https://docs.spring.io/spring-boot/reference/packaging/efficient.html
Судя по данным статьи из вчерашнего поста это даст еще 25% ускорения при старте https://spring.io/blog/2023/12/04/cds-with-spring-framework-6-1

#performance #spring #jvm #java_start_boost
Всем привет!

Ну и последний вариант ускорения старта Java приложения. Самый радикальный, наверное. Отказ от Spring.

Надо отметить, что чистый hello world Spring сервис в плане старта не так уж плох, плюс минус 4 секунды. Основные проблемы начинаются с ростом числа зависимостей. И Spring можно тюнить, подробнее про это можно почитать здесь: https://www.baeldung.com/spring-boot-startup-speed Единственный момент, который мне не понравился - я бы не отключал C2 компиляцию - скорость старта может и увеличится, а вот выйти на оптимальную производительность не получится. И еще интересное исследование - https://github.com/dsyer/spring-boot-allocations Авторы выключили в Spring Boot все, за что мы его любим - Dependency Injection и быструю автоконфигурацию, повесили все на единственный classloader и ускорили старт в 5(!) раз. Только зачем нужен такой Spring?)

Но вернемся к отказу от Spring. Писать на голой Java я не предлагаю) Есть две альтернативы - Quarkus и Micronaut. Оба при создании основной целью ставили получить более быстрый и легковесный фреймворк, чем Spring.

Вот сравнительный бенчмарк Quarkus https://habr.com/ru/companies/haulmont/articles/443242/ Ускорение старта простейшего приложения в 5 раз, до 0.75 секунд. Я беру цифры без native image (GraalVM ), т.к. в этом случае и Spring будет "летать". Для интереса я сравнил локально, разница получилась не в 5 раз, а примерно в 2, с 2.5 до 1.2 секунды. За счет чего получилось ускориться можно почитать тут https://dev.to/nutrymaco/how-quarkus-use-build-time-to-start-your-application-faster-50n Если вкратце - Dependency Injection происходит во время достаточно сложного процесса компиляции.

А вот сравнение Micronaut со Spring https://www.baeldung.com/micronaut-vs-spring-boot Разница чуть поменьше, в 2,5 раза, но тоже ничего) Вот тут, авторы объясняют, почему они быстрее Spring - https://guides.micronaut.io/latest/building-a-rest-api-spring-boot-vs-micronaut-data-gradle-java.html И снова - внедрение зависимостей на этапе компиляции, нет рефлексии и создаваемых в runtime прокси.

Почему я назвал этот вариант самым тяжелым - оба фреймворка сильно отличаются от Spring - по используемым аннотациям, по API в целом. Кроме того они не такие зрелые, им порядка 5-6 лет, поэтому там просто меньше функционала.

#performance #spring #quarkus #micronaut #java_start_boost
Всем привет!

Один из достаточно частых вопросов на собеседованиях - расскажите про стримы в Java, их плюсы и минусы. Если говорить о минусах - всегда под вопрос ставится быстродействие. У меня давно было желание его сравнить, но как часто бывает - меня опередили.
Вот неплохая статья про быстродействие стримов: https://habr.com/ru/articles/807647/

Какие выводы я сделал:

1) тот факт, что на небольшом объеме данных цикл forEach опережает любые виды стримов - ни о чем, им можно пренебречь. Как минимум в 99% случаев. Мне сложно представить кейс, когда объем данных невелик, но нужно выиграть миллисекунды. Скорее всего эти миллисекунды, или даже десятки миллисекунд, мы потеряем на сетевом взаимодействии. У нас же микросервисы, а это значит много сетевых вызовов. Если говорить о причинах - понятно, что на малых объемах данных накладные расходы, которые конечно же есть у стримов, играют роль. И еще момент - чем проще кусок кода, выполняющийся внутри стрима, тем больше отношение накладных расходов стримов к полезному действию.

2) parallelStream в большинстве случаев бьет forEach на больших объёмах данных. Почему так тоже понятно - эффект распараллеливание становится выше, чем накладные расходы на определенном объеме данных.

Итог: стримы можно использовать как вариант по умолчанию, т.к. они улучшают читаемость кода. В высоконагруженных приложениях\ больших объёмах данных имеет смысл смотреть в сторону parallelStream, особенно если есть результаты нагрузочного тестирования. Ну и только на каких-то критичных участках кода, имея на руках результаты НТ, имеет смысл переписать все на циклы

#streams #performance #interview_question