Всем привет!
Как можно масштабировать нагрузку в облаке? Под облаком я понимаю k8s как некий стандарт.
1) "ручками". Простой, но не надежный способ. Отягощающий фактор - не всегда у сопровождения ПРОМ есть права на смену настроек Deployment, тогда требуется отдельный деплой
2) выставить число подов и limits, соответствующими максимальной нагрузке. Еще проще, но совсем не рационально в плане использования ресурсов
3) HorizontalPodAutoscaler https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/ Позволяет менять число подов сервиса при превышении некого порога нагрузки по cpu и memory. Порог - это не процент использования, а соотношения заданного requests с текущим значением. Подходит если требуемая нагрузка может превышать возможности 1 пода, и если сервис поддерживает горизонтальное масштабирование - т.е. stateless.
4) VerticalPodAutoscaler https://habr.com/ru/companies/flant/articles/541642/ Как следует из название - масштабирует поды вертикально. Тут есть нюанс - на данный момент k8s не позволяет менять requests и limits у пода "на ходу". Данная фича называется In-Place Update of Pod Resources и пока находится в бета-версии https://github.com/kubernetes/enhancements/issues/1287
Сейчас VerticalPodAutoscaler может следующее:
а) на основе истории использования подом ресурсов рассчитать и выдать рекомендуемые значения
б) применить эти значения при очередном плановом рестарте
в) самому рестартовать под
Подходит для следующих случаев:
а) statefull сервисы типа хранилища данных в облаке StatefullSet, для которых горизонтальное масштабирование или невозможно, или не приветствуется
б) "легкие" сервисы, которым достаточно одной реплики (или двух по требованиям надежности)
Из особенностей - не гарантируется корректная работа совместно с HorizontalPodAutoscaler по одним и тем же метрикам cpu и memory. И не работает с Java приложениями в плане нагрузки по памяти, т.к. Java сама управляет памятью, а VerticalPodAutoscaler эти данные не видит.
Ну и главный минус - необходимость рестарта для применения настроек
5) как избавиться от необходимости рестарта? Дождаться полноценного внедрения In-Place Update of Pod Resources и доработки VerticalPodAutoscaler. Или использовать бета-версию In-Place Update of Pod Resources реализовать соответствующий k8s controller самому. Это уже сделано: https://piotrminkowski.com/2023/08/22/resize-cpu-limit-to-speed-up-java-startup-on-kubernetes/
Данная реализация не умеет сама рассчитывать рекомендуемые значения requests. Зато позволяет красиво проблему JVM приложений, о которой я уже писал ранее - проблему долгого старта. Java, а точнее Spring приложение, при старте производит достаточно ресурсоемкую настройку контекста. Речь идет про обычный Spring Boot без применения всех возможных способов ускорить запуск. Если память после первоначальной настройки так и остается занятой созданными бинами, то cpu при старте требуется сильно больше, чем при обычной работе. Что с этим делать?
а) Не выделять лишние cpu - время старта увеличивается в разы
б) Пойти по пути, описанному в п.2 - выдать максимум ресурсов. Тогда может получиться, что мы тратим cpu на быстрый старт приложения, а далее ресурсы не утилизируются
в) In-Place Update of Pod Resources
Конкретно по данной реализации - мне она кажется не идеальной, т.к. ресурс по cpu настраивается в 2 манифестах, это не наглядно и способствует внесению несогласованных правок. Но решение в целом - полезное.
#k8s #cloud #scalability
Как можно масштабировать нагрузку в облаке? Под облаком я понимаю k8s как некий стандарт.
1) "ручками". Простой, но не надежный способ. Отягощающий фактор - не всегда у сопровождения ПРОМ есть права на смену настроек Deployment, тогда требуется отдельный деплой
2) выставить число подов и limits, соответствующими максимальной нагрузке. Еще проще, но совсем не рационально в плане использования ресурсов
3) HorizontalPodAutoscaler https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/ Позволяет менять число подов сервиса при превышении некого порога нагрузки по cpu и memory. Порог - это не процент использования, а соотношения заданного requests с текущим значением. Подходит если требуемая нагрузка может превышать возможности 1 пода, и если сервис поддерживает горизонтальное масштабирование - т.е. stateless.
4) VerticalPodAutoscaler https://habr.com/ru/companies/flant/articles/541642/ Как следует из название - масштабирует поды вертикально. Тут есть нюанс - на данный момент k8s не позволяет менять requests и limits у пода "на ходу". Данная фича называется In-Place Update of Pod Resources и пока находится в бета-версии https://github.com/kubernetes/enhancements/issues/1287
Сейчас VerticalPodAutoscaler может следующее:
а) на основе истории использования подом ресурсов рассчитать и выдать рекомендуемые значения
б) применить эти значения при очередном плановом рестарте
в) самому рестартовать под
Подходит для следующих случаев:
а) statefull сервисы типа хранилища данных в облаке StatefullSet, для которых горизонтальное масштабирование или невозможно, или не приветствуется
б) "легкие" сервисы, которым достаточно одной реплики (или двух по требованиям надежности)
Из особенностей - не гарантируется корректная работа совместно с HorizontalPodAutoscaler по одним и тем же метрикам cpu и memory. И не работает с Java приложениями в плане нагрузки по памяти, т.к. Java сама управляет памятью, а VerticalPodAutoscaler эти данные не видит.
Ну и главный минус - необходимость рестарта для применения настроек
5) как избавиться от необходимости рестарта? Дождаться полноценного внедрения In-Place Update of Pod Resources и доработки VerticalPodAutoscaler. Или использовать бета-версию In-Place Update of Pod Resources реализовать соответствующий k8s controller самому. Это уже сделано: https://piotrminkowski.com/2023/08/22/resize-cpu-limit-to-speed-up-java-startup-on-kubernetes/
Данная реализация не умеет сама рассчитывать рекомендуемые значения requests. Зато позволяет красиво проблему JVM приложений, о которой я уже писал ранее - проблему долгого старта. Java, а точнее Spring приложение, при старте производит достаточно ресурсоемкую настройку контекста. Речь идет про обычный Spring Boot без применения всех возможных способов ускорить запуск. Если память после первоначальной настройки так и остается занятой созданными бинами, то cpu при старте требуется сильно больше, чем при обычной работе. Что с этим делать?
а) Не выделять лишние cpu - время старта увеличивается в разы
б) Пойти по пути, описанному в п.2 - выдать максимум ресурсов. Тогда может получиться, что мы тратим cpu на быстрый старт приложения, а далее ресурсы не утилизируются
в) In-Place Update of Pod Resources
Конкретно по данной реализации - мне она кажется не идеальной, т.к. ресурс по cpu настраивается в 2 манифестах, это не наглядно и способствует внесению несогласованных правок. Но решение в целом - полезное.
#k8s #cloud #scalability
Kubernetes
Horizontal Pod Autoscaling
In Kubernetes, a HorizontalPodAutoscaler automatically updates a workload resource (such as a Deployment or StatefulSet), with the aim of automatically scaling the workload to match demand.
Horizontal scaling means that the response to increased load is to…
Horizontal scaling means that the response to increased load is to…
Всем привет!
Случайно наткнулся на старую статью - 2015 год - про переход с legacy на Service Oriented Architecture ака SOA.
И хочу сказать, что это хороший пример развития истории по спирали)
Что в статье актуально?
Заменяем слово SOA на микросервисы, и в целом все, что касается преимуществ микросервисной архитектуры и стратегии перехода на нее - актуально. Микросервисы = SOA 2.0 )))
REST оставляем, SOAP+XML заменяем на gRPC\GraphQL для тех случаев, когда требуется большая производительность и гибкость соответственно по сравнению с REST. К слову, недостаток производительности и гибкости - это основные проблемы SOAP. Ремарка - знаю места, где SOAP еще жив (интеграция с госорганами), но он в любом случае вымирает.
ESB, трудности реализации асинхронного взаимодействия - все эти задачи взяла на себя Kafka. Прорывной инструмент - быстрый, надежный (обеспечивает дешевую персистентность), opensource, простой с точки зрения разработчика. В т.ч. потому, что нет необходимости разрабатывать логику маппинга сообщений на брокере. Да, он реализует только одну из двух основных моделей асинхронного взаимодействия - Publisher-Subscriber - и не реализует Message Queue. Но понятно, что топиками можно пользоваться как заменой очередей, и в большинстве случаев проблем при этом не будет.
Облачные решения - за 10 лет из вызова превратились в новую реальность)
А вызов сейчас - внедрение AI. Как-то так)
#microservices #ai #cloud #kafka #rest
Случайно наткнулся на старую статью - 2015 год - про переход с legacy на Service Oriented Architecture ака SOA.
И хочу сказать, что это хороший пример развития истории по спирали)
Что в статье актуально?
Заменяем слово SOA на микросервисы, и в целом все, что касается преимуществ микросервисной архитектуры и стратегии перехода на нее - актуально. Микросервисы = SOA 2.0 )))
REST оставляем, SOAP+XML заменяем на gRPC\GraphQL для тех случаев, когда требуется большая производительность и гибкость соответственно по сравнению с REST. К слову, недостаток производительности и гибкости - это основные проблемы SOAP. Ремарка - знаю места, где SOAP еще жив (интеграция с госорганами), но он в любом случае вымирает.
ESB, трудности реализации асинхронного взаимодействия - все эти задачи взяла на себя Kafka. Прорывной инструмент - быстрый, надежный (обеспечивает дешевую персистентность), opensource, простой с точки зрения разработчика. В т.ч. потому, что нет необходимости разрабатывать логику маппинга сообщений на брокере. Да, он реализует только одну из двух основных моделей асинхронного взаимодействия - Publisher-Subscriber - и не реализует Message Queue. Но понятно, что топиками можно пользоваться как заменой очередей, и в большинстве случаев проблем при этом не будет.
Облачные решения - за 10 лет из вызова превратились в новую реальность)
А вызов сейчас - внедрение AI. Как-то так)
#microservices #ai #cloud #kafka #rest