(java || kotlin) && devOps
369 subscribers
6 photos
1 video
6 files
306 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Сегодня расскажу про технологию native image.

Стандартная схема работы JVM приложения такая:
1) компилятор превращает исходники в байт-код
2) байт-код запускается на JVM
3) в процессе работы JVM анализирует использование байт-кода и при необходимости оптимизирует его, включая компиляцию в бинарное представление для конкретной процессорной архитектуры. И основные оптимизации надо отметить происходят именно здесь, а не при первичной компиляции. Еще важный момент - классы\библиотеки подгружаются в память не обязательно при старте приложения, а по мере использования. Все это называется JIT - Just in time компиляция. Влиять на нее можно с помощью ряда флагов запуска Java приложения - -server, -client.

Плюс такого подхода - JVM позволяет в 90% случаев игнорировать, на каком железе запускается Java приложение. Минус - долгий старт Java приложения плюс время для "разогрева" и выхода на рабочий режим.

Но с другой стороны с развитием Docker мы и так можем игнорировать особенности железа и ОС на хост-сервере, главное, чтобы там можно было запустить Docker. И наконец кроме долгого старта и разогрева собственно JVM у нас как правило есть Spring с кучей модулей, число которых растет, и в итоге время старта типичного Spring Boot приложения доходит до совсем неприличных величин.

Альтернатива - AOT - Ahead-of-Time compilation. В этом случае мы компилируем исходники в бинарный код в момент первичной компиляции. Причем как собственно приложение, так и JVM и все JAR. Получается такой native image монолит. Проект называется GraalVM https://www.graalvm.org/, официально поддерживается Oracle. Есть open-source версия, основанная на OpenJDK.

Плюс этого подхода - скорость запуска. Это критически важно в облаках, т.к. k8s может "случайно" рестартовать под при изменении конфигурации железа или настроек Deployment. Еще будет выигрыш в скорости обработки запросов, т.к. не тратится CPU и память в runtime на JIT компиляцию.

Какие минусы?

1) невозможна динамическая\ленивая загрузка библиотек\плагинов, classpath фиксируется в момент компиляции. К слову - у этого ограничения есть и плюсы, сложнее эксплуатировать уязвимости типа log4j injection - см. https://t.me/javaKotlinDevOps/4

2) вопрос - откуда компилятор узнает, какой код ему нужно добавить в наш native монолит? Ответ: он идет от метода main. Соответственно, код который явно не вызывается, а, например, вызывается через рефлексию, он не увидит. Соответственно, никакой рефлексии в ПРОМ коде. Что, надо сказать, в целом правильно)

3) аналогично просто так не заработает магия Spring, основанная на рефлексии и динамических прокси. Из чего следует, что мало добавить в Spring приложение AOT компилятор - нужно дорабатывать сам Spring, что и было сделано в Spring Boot 3.2. Другие фреймворки также придется дорабатывать. Например, Mockito до сих пор не работает в native image. Справедливости ради тут причина такая же, как в анекдоте про неуловимого ковбоя Джо - не нужен Mockito в native image)

4) если продолжить про Spring - загрузка бинов по условию: @ConditionalOnProperty, @Profile - тоже не заработает. Нужно указывать при сборке необходимый профиль, чтобы уже при компиляции нужные бины были обнаружены и добавлены в дистрибутив.

5) еще вопрос - но ведь среднее Java приложение + библиотеки + JVM = миллионы строк кода, что будет с компиляцией? Ответ - компиляция будет долгой, до 10 минут на spring boot hello world. Поэтому в документации Spring прямо сказано, что хотя Spring поддерживает запуск тестов в native image - делать так нужно только для интеграционных тестов, лучше на CI, а модульные запускать по старинке, т.к. тут критична скорость получения результата.

#jvm #performance #native_image #spring #docker #buildpacks #cloud #java_start_boost
Всем привет!

Я уже рассказывал про один из вариантов ускорения запуска JVM приложений - использование native image https://t.me/javaKotlinDevOps/242
Напомню, основная идея была в том, что на этапе компиляции мы превращаем байт-код в нативный код. Можно рассматривать этот процесс как некий дамп универсального кода в конкретный, предназначенный для определенной процессорной архитектуры.

Похожий принцип используется и в случае JVM checkpoint/restore https://openjdk.org/projects/crac/ - проект CRaC.
Проект использует функционал Linux checkpoint/restore для Docker образов https://criu.org/Main_Page.
Т.е. в данном случае мы дампим все содержимое памяти JVM приложения на диск.
Работает, соответственно только для Docker и только в Linux, но кажется это не критическое ограничение.
Вот как это можно сделать на чистом Java приложении https://habr.com/ru/articles/719522/
Есть поддержка на всех основных платформах - Spring Boot, Micronaut, Quarqus, см. https://github.com/CRaC/docs
Проблему долгого первого запуска можно обойти либо сделав дамп до выхода на ПРОМ на идентичном Linux-е, либо разворачивая новые версии как канарейку или в моменты минимальной нагрузки, т.е. когда долгий старт не критичен.

Плюсом этого решения перед native image является то, что нет никаких ограничений на динамическую загрузки библиотек и рефлексию.

Кажется, одним из выгодоприобитетелей будут облачные провайдеры FaaS - Function as a Service, а если быть точным - их пользователи. И, собственно, так и есть - Amazon Lambda уже https://github.com/CRaC/aws-lambda-java-libs подддерживает

#crac #startup_time #jvm #performance #java_start_boost
Всем привет!

Продолжу серию постов https://t.me/javaKotlinDevOps/269 про оптимизацию производительности Java приложения.
В первых двух частях я говорил про такие технологии как:
1) native image - компиляция в нативный код на этапе сборки, т.об. устраняется необходимость class loading-а и JIT компиляции
2) CRaC - сохраняет и восстанавливает состояние работающего Docker образа с JRE на диск, т.об. мы получаем уже оптимизированный код

Какие еще могут быть способы выйти на оптимальную производительность побыстрее? native image мы пока отбрасываем, у нас обычная JVM и на ней запускается байт-код.
Встречный вопрос - а что мешает достижению оптимальной производительности? Как ни странно - JIT компилятор. Ведь чтобы ему понять, как оптимизировать байт-код, нужно собрать статистику. Причем процесс сбора статистики может быть цикличным - собрали, оптимизировали, поняли что оптимизация неверная, вернули байт-код обратно... И это все требует времени. А почему бы тогда не собрать статистику по использованию кода заранее, прихранить ее куда-нибудь, а потом использовать сразу со старта.
Эта техника называется Profile-Guided Optimization, в нее умеет GraalVM https://www.graalvm.org/latest/reference-manual/native-image/optimizations-and-performance/PGO/basic-usage/ и упоминаемая ранее Azul JDK https://docs.azul.com/prime/Use-ReadyNow Но к сожалению оба - только в коммерческой версии.
Еще похожую технику использует стандартная OpenJDK при tired compilation https://for-each.dev/lessons/b/-jvm-tiered-compilation но в данном случае речь идет про отпимизацию в течение одной рабочей сессии.

P.S. Это еще не все возможные варианты, не переключайтесь)

P.P.S. Может возникнуть вопрос - зачем GraalVM использует профилирование, он же и так все оптимизировал? Нет, не все. На этапе компиляции нет информации об реальном использовании кода. А оптимизация - это не только компиляция в нативный код, это еще может быть выбрасывание лишних проверок, разворачивание цикла и т.д.

#jre #performance #java_start_boost
Всем привет!

Продолжим рассказ про разные способы ускорения Java. Для начала я бы разделил ускорение в целом на 4 более конкретных направления:
1) ускорение запуска приложения за счет оптимизации\отмены первоначальной загрузки классов
2) ускорение выхода приложения на оптимальную производительность путем оптимизации JIT - Just In Time - компиляции байт-кода в нативный
3) ускорение запуска и в какой-то степени выполнения приложения за счет более легковесного фреймворка, используемого для разработки приложения
4) оптимизация сборщика мусора для достижения нужного баланса между затрачиваемыми ресурсами и паузой в обслуживании клиентских запросов, она же Stop the World

Сегодня поговорим про первое направление. С одной стороны упомянутые ранее и native image, и CRaC тоже ускоряют запуск. Но обе технологии имеют ограничения. native image запрещает reflection и динамическую загрузку классов. Образ, сохраненный с помощью CRaC, может содержать что-то лишнее, и с данной технологией нельзя просто так перезапустить приложение при сбое - т.к. возможно причина сбоя лежит в данных, подгруженные из образа.

Начну издалека.
В Java 5 появилась вот такая фича - https://docs.oracle.com/en/java/javase/21/vm/class-data-sharing.html Class-Data Sharing, сокращенно CDS.
Фича появилась и была забыта. Есть такие фичи, про которые все забывают сразу после релиза новой Java) Еще модульность из Java 9 можно вспомнить.

О чем эта фича? Мы записываем в файл метаданные загруженных классов из classpath. Потом этот файл мапился в память работающей JVM. Зачем? Цели было две:
1) расшаривание классов между несколькими инстансами JVM и т.об. уменьшение потребления RAM
2) ускорение запуска (вот оно!)

Вначале фича работала только с классами Java core. Файл с архивом классов Java core входит в состав JDK, найти его можно по имени classes.jsa. Занимает на диске сравнительно немного - 10-15 Мб. И кстати, CDS в Java включена по умолчанию, используется как раз этот файл.

Позже, в Java 10 https://openjdk.org/jeps/310 появилась возможность дампить и пользовательские классы, эту фичу назвали AppCDS. В Java 13 создание архива было упрощено https://openjdk.org/jeps/350
Пользовательские классы можно добавить в архив предварительно запустив процесс со специальной опцией командной строки -XX:ArchiveClassesAtExit

А если у нас Spring? Ребята в Spring 6.1 обратили внимание на данную опцию и добавили ключ командной строки, позволяющий собрать информацию о динамически загружаемых классах именно для Spring Boot приложения https://docs.spring.io/spring-framework/reference/integration/cds.html
А еще дали рекомендации, как максимально точно собрать информацию о классах и подтвердили, что данная опция ускоряет загрузку на ~30% https://spring.io/blog/2023/12/04/cds-with-spring-framework-6-1 Почему подтвердили - именно такую цель ставили разработчики CDS в JEP 310, упомянутом выше.

Итого - идея в чем-то похожа на Profile-Guided Optimization. Только здесь мы предварительно собираем информацию не об использовании кода, а о загруженных классах. Чем больше информации соберем - тем быстрее будет старт приложения. Минусы - версия JDK, Spring и classpath в целом должны совпадать при тестовом прогоне и использовании в ПРОМе.


#jre #performance #spring_boot #spring #java_start_boost
Всем привет!

Ну и еще одна оптимизация времени старта Java приложения. Самые внимательные уже могли ее заметить пройдя по ссылкам из предыдущего поста.

С момента появления Spring Boot упаковка приложения в fat jar - jar содержащий все зависимости и Tomcat в придачу (или другой контейнер сервлетов) - стала неким стандартом.
Но fat jar при исполнении требуется распаковать. А разархивация всегда требовала времени, не зря архиваторы используются как бенчмарки для процессорных тестов.

Соответственно, можно заранее разложить зависимости по отдельным файлам для ускорения старта. Вот как рекомендует это делать Spring https://docs.spring.io/spring-boot/reference/packaging/efficient.html
Судя по данным статьи из вчерашнего поста это даст еще 25% ускорения при старте https://spring.io/blog/2023/12/04/cds-with-spring-framework-6-1

#performance #spring #jvm #java_start_boost
Всем привет!

Ну и последний вариант ускорения старта Java приложения. Самый радикальный, наверное. Отказ от Spring.

Надо отметить, что чистый hello world Spring сервис в плане старта не так уж плох, плюс минус 4 секунды. Основные проблемы начинаются с ростом числа зависимостей. И Spring можно тюнить, подробнее про это можно почитать здесь: https://www.baeldung.com/spring-boot-startup-speed Единственный момент, который мне не понравился - я бы не отключал C2 компиляцию - скорость старта может и увеличится, а вот выйти на оптимальную производительность не получится. И еще интересное исследование - https://github.com/dsyer/spring-boot-allocations Авторы выключили в Spring Boot все, за что мы его любим - Dependency Injection и быструю автоконфигурацию, повесили все на единственный classloader и ускорили старт в 5(!) раз. Только зачем нужен такой Spring?)

Но вернемся к отказу от Spring. Писать на голой Java я не предлагаю) Есть две альтернативы - Quarkus и Micronaut. Оба при создании основной целью ставили получить более быстрый и легковесный фреймворк, чем Spring.

Вот сравнительный бенчмарк Quarkus https://habr.com/ru/companies/haulmont/articles/443242/ Ускорение старта простейшего приложения в 5 раз, до 0.75 секунд. Я беру цифры без native image (GraalVM ), т.к. в этом случае и Spring будет "летать". Для интереса я сравнил локально, разница получилась не в 5 раз, а примерно в 2, с 2.5 до 1.2 секунды. За счет чего получилось ускориться можно почитать тут https://dev.to/nutrymaco/how-quarkus-use-build-time-to-start-your-application-faster-50n Если вкратце - Dependency Injection происходит во время достаточно сложного процесса компиляции.

А вот сравнение Micronaut со Spring https://www.baeldung.com/micronaut-vs-spring-boot Разница чуть поменьше, в 2,5 раза, но тоже ничего) Вот тут, авторы объясняют, почему они быстрее Spring - https://guides.micronaut.io/latest/building-a-rest-api-spring-boot-vs-micronaut-data-gradle-java.html И снова - внедрение зависимостей на этапе компиляции, нет рефлексии и создаваемых в runtime прокси.

Почему я назвал этот вариант самым тяжелым - оба фреймворка сильно отличаются от Spring - по используемым аннотациям, по API в целом. Кроме того они не такие зрелые, им порядка 5-6 лет, поэтому там просто меньше функционала.

#performance #spring #quarkus #micronaut #java_start_boost
Всем привет!

Одна из моих любимых тем: разработка - искусство компромиссов. Поиск по тэгам #dev_compromises и #arch_compromises. Следствие этого подхода, принцип, который я бы назвал - "не все так однозначно".

Вопрос - как вы относитесь к рефлексии в Java?

Досрочный ответ: рефлексия - это плохо, лучше не использовать. Если дошло до рефлексии - значит в архитектуре проблема.

Чтобы лучше разобраться в теме надо ответить на вопрос: а почему плохо?
Ответа два:

1) рефлексия позволяет нарушить принципы ООП и, следовательно, архитектуру приложения. Автор скрыл внутренности класса через private, а мы туда лезем своими "грязными руками")))

2) снижение производительности. Тут частично работает тот факт, что делаются лишние вызовы кода. Но самое главное - JIT компилятор плохо умеет оптимизировать такой код, т.к. он слишком динамический. Изменится может сам класс, который приходит на вход метода с рефлексией

Окей, инкапсуляция нарушается, код работает медленно. Не используем?

А что с поиском аннотаций по коду? Не своих - до них мы еще дойдем - чужих, чтобы получить некие метаданные об объекте. Большинство вариантов вот тут основано на рефлексии https://www.baeldung.com/java-scan-annotations-runtime

Или у нас есть аннотации, созданные с помощью Spring AOP - это проще, чем AspectJ, если у вас используется Spring. А Spring AOP использует динамические прокси, создаваемые в runtime https://www.baeldung.com/spring-aop-vs-aspectj А с помощью чего создается прокси в runtime - правильно, рефлексии.

Да что там AOP - создание бинов из @Configuration - это тоже вызов методов @Bean через рефлексию.

Почему же рефлексию используют и предлагают к использованию, если это такая проблемная технология?

Вернемся к двум ее недостаткам:

1) не надо использовать рефлексию для вызова private методов или доступа к private полям. Если такая задача встала - у вас в самом деле проблемы с архитектурой

2) не надо использовать рефлексию часто и при этом в высоконагруженных приложениях. Тот же Spring использует рефлексию только при старте приложения для инициализации прокси и бинов. И к слову в т.ч. и поэтому старт Spring приложения может быть долгим, и люди с этим борются, см. мой цикл статей про ускорение старта #java_start_boost Более того, разработчикам Spring для поддержки native image пришлось серьезно допиливать его в т.ч. из-за динамических прокси и @Configuration https://docs.spring.io/spring-boot/reference/packaging/native-image/introducing-graalvm-native-images.html

Итого: рефлексию стоит рассматривать как возможность получить метаданные о классе. Помня при этом о производительности.

И если вопрос упирается в производительность - всегда есть альтернативы рефлексии. Это работа с байт-кодом не в runtime:
1) compile time (свой компилятор, см. статью про AspectJ)
2) post-compile time (свой плагин для сборки, см. Jandex для поиска аннотаций https://smallrye.io/jandex/jandex/3.2.2/index.html)
3) load-time (свой агент+classloader, см. статью про AspectJ)
Все варианты сложнее в реализации и подключении к проекту, зато вносят минимальное влияние в runtime.

P.S. Да, если при упоминании о динамических прокси вы вспомнили про задачку с собесов о вложенном @Transactional - это оно. И ответ на этот вопрос не так очевиден https://habr.com/ru/articles/347752/

#java #reflection #dev_compromises