(java || kotlin) && devOps
369 subscribers
6 photos
1 video
6 files
306 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
Всем привет!

Давненько не было постов на канале, что поделать - конец квартала, авральный режим on.
Но я вернулся) К делу.

Java всегда славилась своим boiler plate кодом. Ремарка - конечно же не только boiler plate, но сейчас про него и про борьбу с ним. Борьба идет, и в Java 16 (а точнее в Java 14 но в режиме preview) появились records, они же записи.
Делаешь вот такое объявление:
public record Point(int x, int y) {}
и получаешь из коробки конструктор, getter, equals(), hashСode() и toString().
Т.е все то, что раньше приходилось писать руками или использовать Lombok. Ага, Lombok. Т.е. он стал не нужен? Не совсем. Если внимательно глянуть на список того, что под капотом делает record, то можно заметить, что там нет setter-а. Т.е. record - это иммутабельный объект и value object. Две записи с одним и тем же набором полей всегда равны. Это не баг, это фича. Маленькое дополнение - record еще меняет классический getter c getXyz на просто xyz(), но это детали. Еще дополнение - вот тут среди прочих фичей Java 17 достаточно интересно о работе с record https://habr.com/ru/companies/jugru/articles/652821/

Т.е. получается, что record заменяет @Value из Lombok.

Но не заменяет:
1) полноценный @Data - изменяемый класс без boiler plate

2) кейс, когда мы не хотим все сразу getter, toString() ... а хотим только часть этих методов

3) @Builder - тут проще показать, чем объяснять:
Person.builder()
.name("Adam Savage")
.city("San Francisco")
.build();

4) @Log - простое добавление логгера в класс

5) и наконец @SneakyThrows - если вы не любите checked exception

#java #lombok #boiler_plate_free
Небольшое дополнение по Java records. Как известно, Java - это огромное количество библиотек и фреймворков и, следовательно, вопросы совместимости.
Так вот. Spring Boot Web записи поддерживает, как в контроллере, так и в http клиентах. Java сериализация естественно, это же часть спецификации Java. Jackson сериализация. Mapstruct. И Spring Data JPA, там где это возможно, учитывая иммутабельность https://www.baeldung.com/spring-jpa-java-records
Что я забыл? Наверное забыл, но 3 года прошло - поддержку должны были уже запилить)

#java #spring
Всем привет!

Давно не писал про Kotlin, а в названии канала он есть на почетном втором месте) Исправляюсь.

Основная фишка Kotlin - это упрощение написания и чтения кода за счет упрощения языка. В чем упрощение: все типы - объектные, функция всегда возвращает результат, нет неявных преобразований, нет проверяемых исключений, некоторые стандартные паттерны (синглтон, делегат) стали частью языка - не нужно изобретать велосипед. Возможность переопределения операций и полноценные функциональные типы - на самом деле тоже. Операция - краткий общеупотребительный вариант метода, функцию можно передавать как объект не создавая для этого объект.
Но как всегда есть нюансы.

Вот например inline методы и связанный с ним reified https://www.baeldung.com/kotlin/reified-functions
При беглом знакомстве возникают 2 вопроса:
1) разработчики Kotlin загрязняют язык, ведь компилятор, а скорее JVM, сами справятся с inline?
2) Kotlin хакнул type erasure для generic?

Ответ на оба вопроса - нет.
И есть отличная статья на эту тему https://habr.com/ru/articles/775120/ Автора знаю лично, рекомендую почитать эту и другие его статьи про Kotlin.

Для ленивых ))) ответы:
1) inline нужен только для методов с параметрами функционального типа, чтобы избежать обвертывания функции в объект. Java компилятор не умеет работать с функциональными типами, увы
2) reified не нарушает спецификации Java, компилятор Kotlin лишь сохраняет тип там, где он его знает, и это касается только inline методов

И про простоту Kotlin в целом и сложность inline. Как выглядит процесс со стороны:
1) у нас полноценные функциональные типы
2) в коде их будет много
3) Java не умеет с ними работать
4) сделаем inline, чтобы не снизить производительность при работе с такими типами
5) появляются баги из-за inline, приходится вводить ключевые слова noinline и crossinline. Подробнее об этом есть в статье выше.
6) кто-то просит: раз при inline мы знаем исходный тип generic - давайте дадим возможность работы с ним, появляется reified
7) возникают новые баги, их фиксят
...

Процесс вымышленный, возможно, в реальности было по-другому. Я хотел подчеркнуть вот что: одна фича тянет за собой другую, другая - несколько особых случаев. И все это усложняет язык, хотя цель была противоположная.

P.S. Ну и да, получается, во всем виновата Java)

#kotlin #java
Всем привет!

Одна из моих любимых тем: разработка - искусство компромиссов. Поиск по тэгам #dev_compromises и #arch_compromises. Следствие этого подхода, принцип, который я бы назвал - "не все так однозначно".

Вопрос - как вы относитесь к рефлексии в Java?

Досрочный ответ: рефлексия - это плохо, лучше не использовать. Если дошло до рефлексии - значит в архитектуре проблема.

Чтобы лучше разобраться в теме надо ответить на вопрос: а почему плохо?
Ответа два:

1) рефлексия позволяет нарушить принципы ООП и, следовательно, архитектуру приложения. Автор скрыл внутренности класса через private, а мы туда лезем своими "грязными руками")))

2) снижение производительности. Тут частично работает тот факт, что делаются лишние вызовы кода. Но самое главное - JIT компилятор плохо умеет оптимизировать такой код, т.к. он слишком динамический. Изменится может сам класс, который приходит на вход метода с рефлексией

Окей, инкапсуляция нарушается, код работает медленно. Не используем?

А что с поиском аннотаций по коду? Не своих - до них мы еще дойдем - чужих, чтобы получить некие метаданные об объекте. Большинство вариантов вот тут основано на рефлексии https://www.baeldung.com/java-scan-annotations-runtime

Или у нас есть аннотации, созданные с помощью Spring AOP - это проще, чем AspectJ, если у вас используется Spring. А Spring AOP использует динамические прокси, создаваемые в runtime https://www.baeldung.com/spring-aop-vs-aspectj А с помощью чего создается прокси в runtime - правильно, рефлексии.

Да что там AOP - создание бинов из @Configuration - это тоже вызов методов @Bean через рефлексию.

Почему же рефлексию используют и предлагают к использованию, если это такая проблемная технология?

Вернемся к двум ее недостаткам:

1) не надо использовать рефлексию для вызова private методов или доступа к private полям. Если такая задача встала - у вас в самом деле проблемы с архитектурой

2) не надо использовать рефлексию часто и при этом в высоконагруженных приложениях. Тот же Spring использует рефлексию только при старте приложения для инициализации прокси и бинов. И к слову в т.ч. и поэтому старт Spring приложения может быть долгим, и люди с этим борются, см. мой цикл статей про ускорение старта #java_start_boost Более того, разработчикам Spring для поддержки native image пришлось серьезно допиливать его в т.ч. из-за динамических прокси и @Configuration https://docs.spring.io/spring-boot/reference/packaging/native-image/introducing-graalvm-native-images.html

Итого: рефлексию стоит рассматривать как возможность получить метаданные о классе. Помня при этом о производительности.

И если вопрос упирается в производительность - всегда есть альтернативы рефлексии. Это работа с байт-кодом не в runtime:
1) compile time (свой компилятор, см. статью про AspectJ)
2) post-compile time (свой плагин для сборки, см. Jandex для поиска аннотаций https://smallrye.io/jandex/jandex/3.2.2/index.html)
3) load-time (свой агент+classloader, см. статью про AspectJ)
Все варианты сложнее в реализации и подключении к проекту, зато вносят минимальное влияние в runtime.

P.S. Да, если при упоминании о динамических прокси вы вспомнили про задачку с собесов о вложенном @Transactional - это оно. И ответ на этот вопрос не так очевиден https://habr.com/ru/articles/347752/

#java #reflection #dev_compromises
Всем привет!

Давно хотел написать небольшую памятку по уровням логирования.

Стандартный набор уровней логирования для бизнес приложений:
TRACE
DEBUG
INFO
WARNING
ERROR

Встречается еще один - FATAL - но на моей практике это что-то разряда OutOfMemory, которое прикладной код не выбрасывает.

TRACE - самый редко встречающийся уровень. Почему? Потому что всегда, когда стоит выбор между трассировкой через логи или запуском в режиме отладчика - нужно выбирать второе. Это банально быстрее, т.к. не требует пересборок. Почему именно пересборки, во множественном числе - потому что у нас ООП, куча классов и методов, с первого раза расставить TRACE правильно вряд ли получится. Единственный минус отладки - если это происходит на тестовом или dev стенде - другие люди не смогут там работать. Т.е. их нужно предупредить. Или еще лучше - иметь минимум 2 подходящих стенда. Когда стенд не подходящий - это ПРОМ (PROD) или PROD-like стенды, куда нет сетевого доступа с компьютера разработчика. Вот это пожалуй единственное место, где может понадобиться TRACE. И если он там понадобился, то возможно у вас проблемы либо на этапе тестирования. Либо какие-то значимые отличия в конфигурации стендов, что тоже может быть поводом задуматься.
Что делать с TRACE - убирать сразу после нахождения проблемы, т.е. в следующем хотфиксе.

DEBUG - используется как правило на тестовых стендах чтобы разобраться с пришедшими от смежников данными и как эти данные влияют на состояние нашего сервиса. Разработка и отладка идет на заглушках, что там придет от смежников до конца не ясно, несмотря на согласованную аналитику - вот этот вот кейс. Если используется для трассировки шагов - см. абзац выше)
Что делать с DEBUG - убирать перед фиксацией ПРОМ релиза. Почему бы не оставить? Даже не из-за производительности, этот момент решить можно, а из-за ухудшения читаемости. Размер кода увеличивается, лог как правило дублирует близлежащий метод в плане доносимой информации, т.е. нарушаем DRY. Если DEBUG во внешней библиотеке - отключаем через настройку уровня логирования для конкретного пакета.

Все уровни далее по большому счету пишутся для сопровождения и тестировщиков.

INFO - нет ошибки, но сервис дошел до некой важной точки, и эта информация поможет при разборе полетов в случае ошибок и сбоев. Я видел кейсы, когда сопровождение запрещало писать на ПРОМ с уровнем INFO, но со временем оно одумывалось, и запрет снимали).

WARN - ошибки, не позволяющей вернуть данные клиенту, нет. Но есть либо некритичная ошибка, либо отсутствуют какие-то данные. И поэтому мы либо уходим в альтернативную ветку пользовательского сценария, либо берем данные из кэша, и возвращаем ответ клиенту.

ERROR - ошибка, прокидываемая клиенту. Не в виде stack trace конечно) Суть в том, что процесс обработки клиентского запроса прерывается, возвращается ошибка согласно API. Две самые частые ошибки, что я здесь вижу:
а) вывод error на любую ошибку смежника, даже не блокирующую.
б) error из используемой библиотеки, которая для нашего процесса не является блокирующей. В этом случае ее нужно убирать либо через настройку уровня логирования для пакета этой библиотеки, либо через ее доработку (если это возможно).

Эти три уровня убирать перед релизом не нужно, но стоит периодически их просматривать на предмет актуальности.

И последнее - по производительности. Просадка в производительности из-за логирования может быть из-за вычисления параметров даже в том случае, когда текущий уровень логирования выключен. Спасает ленивое вычисление параметров для выводимого в лог сообщения.
Это поддерживается в
а) log4j https://logging.apache.org/log4j/2.12.x/manual/api.html
б) slf4j https://www.slf4j.org/faq.html#logging_performance
через lambda параметры начиная с Java 8. Т.е. в большинстве инсталляций. Ну я надеюсь на это)

Еще просадка может быть из-за количества сообщений. Тогда смотри абзацы про TRACE и DEBUG выше. Еще можно глянуть мой пост про производительность в log4j https://t.me/javaKotlinDevOps/77 и поднять уровень логирования для ПРОМ.

#java #logging
Всем привет!

Есть много способов получить данные из БД с помощью JPA:
1) JPQL
2) JPQL Native Query
3) HQL
4) Spring Data JPA Repository
5) Criteria API
6) QueryDSL
...

Предположим, нам нужно вернуть набор строк. Задать параметры запроса можно по-разному, а итог будет один - List или другая коллекция (Collection) с набором данных. Верно? Не совсем)
Если посмотреть на список возвращаемых Spring Data JPA данных https://docs.spring.io/spring-data/jpa/reference/repositories/query-return-types-reference.html#appendix.query.return.types то там можно увидеть много чего интересного. В т.ч. Stream.
А вот пример его использования: https://vladmihalcea.com/spring-data-jpa-stream/
Аналогично можно вернуть Stream и из обычного JPA - см. метод getResultStream, вот пример: https://thorben-janssen.com/jpa-2-2s-new-stream-method-and-how-you-should-not-use-it/

Зачем это может быть нужно?

Во-первых это просто красиво... Шучу. Если вы используете Stream в бизнес-логике - то кажется логичным использовать их и при обращении к БД.
А во-вторых: главная особенность стриминга - равномерная выборка данных. И в каждый момент данных в обработке будет одна запись.
Рассмотрим кейс, когда нужно обработать на клиенте миллион записей.

Ремарка: если у вас такой кейс - подумайте, нет ли проблем в архитектуре. Данные лучше обрабатывать на сервере СУБД. Если все же проблем нет - продолжим)

Так вот, какие у нас варианты:
1) вытащить на клиент миллион записей. Запрос к БД будет один, она выдержит, но с неплохой вероятностью можно убить клиент через Out of Memory.
2) организовать пагинацию, например, вот так: https://www.baeldung.com/spring-data-jpa-iterate-large-result-sets. Данных на клиенте в моменте не много, по размеру страницы, но запросов к БД ... тысяча.
3) использовать стримы. Запрос к БД один, данных на клиенте немного. Не обязательно одна запись, но в любом случае немного, детали ниже.

К слову, стриминг по БД с JPA аналогичен перемещению курсора по ResultSet в JDBC. С накладными расходами и плюшкам, которые дает сессия JPA, конечно.

И про объем данных на клиенте. Казалось бы - вытаскиваем записи поштучно. Но если не указать fetch size - объём предварительной выборки - для некоторых СУБД Hibernate вытащит на клиента все данные за раз, и мы вернемся к варианту 1 (((

#jpa #java_streams #rdbms
Всем привет!

Не отпускает меня тема AI)
Напомню, что с одной стороны AI ~= Python, но с другой стороны Java потихоньку подтягивается, о чем я уже писал на канале, см. по тегам.

Вот отличный пример генерации данных с помощью AI с запоминанием контекста на Spring AI https://piotrminkowski.com/2025/01/28/getting-started-with-spring-ai-and-chat-model/
Обратите внимание на "магию" Spring - в части преобразования ответа модели в коллекцию.
А вот тут https://piotrminkowski.com/2025/01/30/getting-started-with-spring-ai-function-calling/
на "магию" привязки функций, забирающих данные из API брокера и с сервиса-поставщика биржевой информации к вызову модели.
Красиво, черт возьми!)

P.S. Интересно, учитывая недетерминистическое поведение модели - всегда ли эта магия работает. Буду проверять)

#ai #java #spring
image_2025-02-20_15-52-56.png
68.4 KB
Всем привет!

Маленький факт. Судя по индексу языков TIOBE мы находимся на второй волне интереса к теме AI. И эта волна существенно сильнее первой.

P.S. Зеленая линия - Java, есть небольшой подъем после длительного спада

#ai #python #java
Всем привет!

Нашел забавную статью о том, как Java превратить в BrainFuck https://ru.wikipedia.org/wiki/Brainfuck
Статья https://habr.com/ru/articles/886080/
Всегда было ощущение, что это на условном Perl можно написать не очень понятную строку кода, выглядящую прилично, а на самом деле форматирующую диск C:) Ну или на Scala на худой конец. А тут Java.

У меня только один вопрос по первому примеру - где код программы, которая подбирала эти магические числа?
А второй отлично показывает, чем может быть вредно Reflection API. Убирать его конечно не надо, но подумать о защите для системных классов стоило бы.

#java
Можно ли быстро сделать и запустить single-file прототип на Java?

Как старый джавист я всегда немного с завистью смотрел видео, где человек на Python, PHP, Ruby пишет скрипт, содержащий достаточно сложный код и просто запускает его командой python script.py.
Не сказать, что Java ничего не делает в эту сторону:
1) JShell - позволяет просто запускать Java код без метода main построчно. Работает начиная с Java 9
2) JEP 330: Launch Single-File Source-Code Programs - не надо отдельно вызывать javac. Запуск программы работает через java HelloWorld.java. Работает с Java 11
3) JEP 477 Implicitly Declared Classes and Instance Main Methods - все тоже самое, но теперь не нужно объявлять класс (он создается неявно) и декларация метода main сильно упрощена. В режиме preview с Java 21

Но все это работает с простыми приложениями. А если нужны зависимости? Наш любимый Spring, например, с pom bom и кучей библиотек + Lombok. Да еще в нескольких файлах. Да еще хотелось бы не указывать параметры сборки в командной строке каждый раз, и не плодить лишних shell скриптов.
Когда-то подобная фича была в Spring Boot Cli - да, в Spring Boot и своя консоль. Но фичу выпилили, на мой взгляд зря. И из полезного в Cli остался по сути только аналог Spring Initialzr.
Но я отвлекся)

Кто ищет, тот всегда найдет - встречаем https://www.jbang.dev/documentation/guide/latest/index.html
Как это работает - хорошо проиллюстрировано по ссылке выше.
Я проверил на комбинации Spring Boot + Lombok все работает. Настройки из лежащего рядом application.properties подтягиваются. Единственный момент - были проблемы, если код разнесен по нескольким файлам - не обнаруживалась аннотация @Scheduled. Т.е. реализация multiple source file немного хромает, о чем разработчики предупреждают https://www.jbang.dev/documentation/guide/latest/organizing.html
Зато - все зависимости выкачиваются, код компилируется перед запуском, параметры компиляция настраиваются в файле с исходниками. Если надо - даже выкачивается Java. Принимает на вход java исходники, kotlin, упомянутый выше код для jshell, код внутри markdown (!!!) и можно даже так: jbang --code System.out.println("Hello World!")

Рекомендую к использованию!

#java #prototyping
PHP становится Java-ой?

Недавно посмотрел видео о перспективах PHP https://vkvideo.ru/video-224967259_456239053 Я на PHP писал мало, но т.к. он широко распространён - интересно, развивается ли он и как именно. Он развивается, и я этому не удивлён. Да, есть распространённое негативное мнение про PHP и его разработчиков. Любой простой язык привлекает непрофессионалов. Но ситуация сложнее, чем кажется, на это намекает официальный code style языка https://php-psr.ru/accepted/PSR-12-extended-coding-style-guide/ Обязательность строк разделителей, фиксированное число пробелов, регистр символов - все серьёзно. Небольшое отступление - к аббревиатуре PSR из статьи выше мы ещё вернёмся.

Так вот, PHP становится похожим на Java.

Чтобы понять как именно - стоит вспомнить, чем он характеризовался изначально?

1) динамическая типизация. От неё уходят, с костылями в виде объявления типов в комментариях и проверке статическим анализатором типа checkstyle. Причина - невозможно работать со сложным проектом и динамической типизацией. Если ты конечно не хочешь "гов..кодить".

2) интерпретация вместо компиляции. Тоже уходят, есть AOT и JIT компиляторы PHP. Также фреймворки, например, IoC контейнеры, могут предварительно сохранять конфигурацию на диске. По соображениям производительности

Да, в PHP тоже есть IoC контейнеры.

3) малоизвестный факт - исходно в PHP была т.наз умирающая модель процессов. После обработки запроса клиента контекст процесса полностью очищается. Такой true stateless. Причём очищались не просто клиентские данные, а все бины IoC контейнера, т.е. вообще все. Побочные эффекты такого подхода противоположные. Положительный: PHP компоненты инициализируются очень быстро, по другому никак. Отрицательный: на утечки памяти можно забить, т.е. "гов...кодим") Так вот, от этой модели тоже уходят. Снова по соображениям производительности

В общем язык развивается, т.к. наследие огромное.

P.S. Чтобы не было пренебрежительного отношения к PHP - поговорим про стандартизацию. В PHP есть такое понятие, как middleware. Вот его неплохое описание https://laravel.com/docs/12.x/middleware
Ключевой момент - компоненты middleware переиспользуются в различных фреймворках. Как это получается? Потому что многое стандартизируется, с помощью PSR. В Java тоже есть стандарты - JPA, JDBC,  http сервлеты и фильтры, но видится, что их меньше. Когда-то этим занимался проект Java EE, не смог, умер и воскрес, а за это время возникло несколько экосистем - Spring, Quarkus, Micronaut... И это я Kotlin не беру) Почему я назвал их экосистемами - каждая старается привязать к своим компонентам. Так что как ни странно - PHP выглядит более стандартизированным)

#java #PHP #lang