(java || kotlin) && devOps
366 subscribers
6 photos
1 video
7 files
332 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
image_2025-02-20_15-52-56.png
68.4 KB
Всем привет!

Маленький факт. Судя по индексу языков TIOBE мы находимся на второй волне интереса к теме AI. И эта волна существенно сильнее первой.

P.S. Зеленая линия - Java, есть небольшой подъем после длительного спада

#ai #python #java
Java vs Python, часть не помню какая)

Я уже делал несколько постов про то, как инструменты, исходно появившиеся в экосистеме Python, мигрируют в Java.
Причина я думаю понятна - большое число Java программистов, развитая экосистема.

Вот еще пример.

Важной частью Data Science является веб скрапинг (Web Scraping) - обход сайтов в сети интернет и получение из них определенного рода данных. И если вбить эти два слова "веб скрапинг" в поиск - он сразу подставит python)
Вот типичная статья из выдачи Яндекса https://habr.com/ru/companies/ruvds/articles/796885/
Основные python инструменты оттуда - BeautifulSoup, Scrapy, Selenium, lxml, pyquery

А что есть в Java? Есть ли что-то?)

BeautifulSoup - собственно парсинг страниц сайтов. Аналог в Java - jSoup https://www.baeldung.com/java-with-jsoup
Scrapy - тоже парсинг, но с многопоточкой, работой с сессией, куками. Т.е. для массового скрейпинга и работы со сложными сайтами. В Java - Webmagic https://www.baeldung.com/java-webmagic-web-crawler Возможностей поменьше, но инструмент в наличии
Selenium - не зависит от языка, вообще говоря написан на Java. В интеграционных тестах на Java я его еще лет 15 назад использовал.
lxml - быстрый парсер xml\html. Вообще у Java большой выбор парсеров: DOM, SAX, Stax. Но тут речь про работу с HTML, а HTML - это конечно подмножество XML, но, как правило - XML с ошибками. Зато в Java есть библиотечка TagSoup, цитата: "SAX-compliant parser written in Java that, instead of parsing well-formed or valid XML, parses HTML as it is found in the wild".
pyquery - работа с HTML в стиле jquery. Вот тут аналога не нашел, но, кажется, не критично.

Итого - экосистемы не изолированы, хорошие идеи перетекают из одной в другую. Java хоронить рано)

#java #python #data_science
👍21🔥1
И снова AI агенты...

AI агент по определению должен делать что-то полезное, делать это с использованием AI, автономно и недетерминировано.
Сейчас я хочу рассмотреть свойство полезности.

AI агент в чем-то похож на умный proxy. Ум обеспечивает LLM (или не обеспечивает, тут идут споры))) ). А далее агент вызывает некую существующую функцию. Или несколько функций.
В терминологии AI это tool:
1) https://python.langchain.com/docs/concepts/tools/
2) https://docs.spring.io/spring-ai/reference/api/tools.html

tool - вообще говоря это просто метод Java, Python или любого другого языка, аннотированый соответствующим образом.
Как агент понимает, что умеет tool? Аннотации с описанием назначения тула, входных и выходных параметров.

Но если подумать - мы же живем в REST мире, в нем победил OpenAPI, а там вся необходимая информация есть. И текстовые описания, и граничные значения, и примеры. Даже адреса серверов на разных средах можно в спеке указать.
Нельзя ли это как-то переиспользовать? DRY все таки!

Можно. https://python.langchain.com/docs/integrations/tools/openapi/ на примере Python
Загружаем спеку, преобразуем в формат, понятный AI и создаем агента:

with open("spotify_openapi.yaml") as f:
raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader)
spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec)
...
spotify_agent = planner.create_openapi_agent(
spotify_api_spec,
requests_wrapper,
llm,
allow_dangerous_requests=ALLOW_DANGEROUS_REQUEST,
)


Почему не Java?
https://github.com/langchain4j/langchain4j/issues/1307
Ждем-с.
Что-то делается и для Spring AI, но пока сторонними разработчиками https://readmedium.com/connect-existing-openapis-to-llms-with-spring-ai-039ccabde406

Это самый простой способ вызвать существующий функционал.
Если он не подходит по одной следующих причин:

1) нет готового адаптера OpenAPI
2) нет OpenAPI спецификации, или она сделана криво, а доработка ее другой командой требует времени
3) хочется объединить несколько запросов в один tool или обогатить ответ tool-а локальной информацией
4) нужно убрать лишнее из ответа

то можно вернуться к исходному варианту - написать свой кастомный tool, возвращающий только то, что нужно и документированный так, как нужно.

Ну и третий вариант - отдельный MCP сервер https://t.me/javaKotlinDevOps/376.
У него два плюса:
1) MCP API - это специализированное API, адаптированное для использования LLM
2) tool-ом в виде MCP сервера может в теории воспользоваться любой AI агент

#ai #llm #spring #python
👍1