(java || kotlin) && devOps
367 subscribers
6 photos
1 video
6 files
313 links
Полезное про Java и Kotlin - фреймворки, паттерны, тесты, тонкости JVM. Немного архитектуры. И DevOps, куда без него
Download Telegram
AI на практике или учимся читать с помощью AI)

Вот есть неплохая статья - введение в тему работы с ElasticSearch и JPA на Java+Spring https://habr.com/ru/companies/rostelecom/articles/851658/
Всем она хороша, кроме одного - 1700 строк, 120 кб текста, время для чтения - 41 минута. И как нетрудно догадаться - статья покрывает все основные темы по поиску с помощью Elasticsearch, но там прям много воды. Может автору за символы платят, хз)
Но повторюсь по сути все ок.
И тут казалось бы - вот звездный час AI. Тем более они теперь с интернетом дружат.

Скормил статью разным AI чатам, попросил сократить, сохранив код, основные классификации и описания атрибутов.

Итоги такие:

0) вне конкурса - пересказ в браузере Яндекс. Сокращает - отлично, но очень тезисно получается, ничего не понятно. Незачет

1) YaGPT - сказал, что не умеет, отправил на внешние сайты. Незачет

2) DeepSeek - полное фиаско. Во-первых забавный факт - когда я забыл отжать галочку: "искать в вебе" - модель стала пересказывать какую-то левую статью про работу с LLM. Включил галочку - модель увидела в ссылке слово rostelecom и стала пересказывать тарифы оператора. Ок, включаю режим рассуждений. Снова мимо, причем с дико странной формулировкой: "Мы не можем напрямую загрузить и обработать веб-страницу, но я могу вспомнить или найти ключевые моменты статьи, основываясь на ее содержании, если я с ней знаком." И далее снова левая статья и ее пересказ. В общем No comments, не пересказ - не конек DeepSeek

3) GigaChat - пересказал всю статью, сильно лучше Яндекс браузера, но потом пошли глюки. В первой версии пересказа был только код, почти без текста. Непонятно. Попросил добавить текста - исчез весь код. Попросил совместить - начал придумывать какие-то левые классы, т.е. потерял контекст. Еще работает медленно. Незачет

4) Perplexity - в целом неплохо пересказал с первого раза. Но - потерял последнюю треть документа - похоже на оптимизацию. Добавил недостающее после указания конкретных глав. Если просишь добавить без конкретики какие главы пропущены - все равно пропускает. Причем чем больше просишь - тем компактнее становится итоговый текст, т.е. видно, что модель экономит контекст. Еще минусы:
а) переставляет местами главы, причем не релевантно смыслу.
б) оставляет мало текста, приходится просить добавлять текстовые описания для атрибутов и вариантов реализации

5) Mistral - примерно все тоже самое, только в первой версии пересказа вообще практически не было текста, только код. Хотя просил я другое. После просьбы добавить текста - добавил. В остальном работает также, как Perplexity, с теми же минусами

Вывод: похоже с первого раза выдать нормальный пересказ большой статьи современные LLM не могут. И это даже не книга. Причина в оптимизации из-за ограниченного контекста. Но в режиме переписки работать можно.

P.S. И статья на 120 кб - это конечно перебор) Я люблю читать - но все равно перебор)

#ai #llm #elasticsearch #java #spring