A graphene key for computing.
Current silicon technology exploits microscopic differences between computing components to create secure keys, but AI techniques can be used to predict defects and gain access to data. Penn State researchers have designed a way to make the encrypted keys harder to crack using graphene.
The results are presented in Nature Electronics: https://www.nature.com/articles/s41928-021-00569-x
#sciencenews #AI #computing #graphene
Current silicon technology exploits microscopic differences between computing components to create secure keys, but AI techniques can be used to predict defects and gain access to data. Penn State researchers have designed a way to make the encrypted keys harder to crack using graphene.
The results are presented in Nature Electronics: https://www.nature.com/articles/s41928-021-00569-x
#sciencenews #AI #computing #graphene
Nature
Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks
Nature Electronics - Disorder in the charge carrier transport of graphene-based field-effect transistors can be used to construct physically unclonable functions that are secure and can withstand...
Writing with graphene.
A Rice University laboratory can fabricate high resolution conductive patterns at the micron-scale using a laser-induced graphene synthesis process. The graphene patterns can be formed on surfaces including wood, paper, and even food.
Their work has been published in ACS Nano: https://pubs.acs.org/doi/10.1021/acsnano.1c01843
#sciencenews #graphene #physics
A Rice University laboratory can fabricate high resolution conductive patterns at the micron-scale using a laser-induced graphene synthesis process. The graphene patterns can be formed on surfaces including wood, paper, and even food.
Their work has been published in ACS Nano: https://pubs.acs.org/doi/10.1021/acsnano.1c01843
#sciencenews #graphene #physics
ACS Publications
High-Resolution Laser-Induced Graphene from Photoresist
The fabrication of patterned graphene electronics at high resolution is an important challenge for many applications in microelectronics. Here, we demonstrate the conversion of positive photoresist (PR), commonly employed in the commercial manufacture of…
Stretching graphene.
A team of researchers at the Universität Basel have demonstrated the controllable modification of the electronic properties of graphene during stretching processes. The results could lead to the design of new electronic components using the wonder material.
The mechanisms are explained in Communications Physics: http://dx.doi.org/10.1038/s42005-021-00651-y
#sciencenews #graphene #physics
A team of researchers at the Universität Basel have demonstrated the controllable modification of the electronic properties of graphene during stretching processes. The results could lead to the design of new electronic components using the wonder material.
The mechanisms are explained in Communications Physics: http://dx.doi.org/10.1038/s42005-021-00651-y
#sciencenews #graphene #physics
Nature
Global strain-induced scalar potential in graphene devices
Communications Physics - The electrical and optical properties of a material depend strongly on the details of its crystal structure. Here, the authors report a technique to mechanically deform the...