AI-powered microscopes.
Light field microscopy allows the neuronal signals in the brain to be imaged in real time, but the images are often lacking quality and take a long time to process for visualisation. European Molecular Biology Laboratory scientists are using artificial intelligence to boost the image processing speeds from days to seconds.
Learn about their technique in Nature Methods:
https://www.nature.com/articles/s41592-021-01136-0
#sciencenews #AI #science #microscopy
Light field microscopy allows the neuronal signals in the brain to be imaged in real time, but the images are often lacking quality and take a long time to process for visualisation. European Molecular Biology Laboratory scientists are using artificial intelligence to boost the image processing speeds from days to seconds.
Learn about their technique in Nature Methods:
https://www.nature.com/articles/s41592-021-01136-0
#sciencenews #AI #science #microscopy
Nature Methods
Deep learning-enhanced light-field imaging with continuous validation
A deep learning–based algorithm enables efficient reconstruction of light-field microscopy data at video rate. In addition, concurrently acquired light-sheet microscopy data provide ground truth data for training, validation and refinement of the algorithm.
The earthworm in a new light.
By combining novel imaging techniques, a team of researchers from the Max Planck Institute for Marine Microbiology has imaged the exciting variety of chemical interactions that take place inside the earthworm. Their chemo-histo-tomography method combines chemical imaging of the metabolites using mass spectrometry with micro-computed X-ray tomography of the microanatomy of the animal.
The work has recently been published in PNAS: http://dx.doi.org/10.1073/pnas.2023773118
#sciencenews #microscopy #biology #microbiology
By combining novel imaging techniques, a team of researchers from the Max Planck Institute for Marine Microbiology has imaged the exciting variety of chemical interactions that take place inside the earthworm. Their chemo-histo-tomography method combines chemical imaging of the metabolites using mass spectrometry with micro-computed X-ray tomography of the microanatomy of the animal.
The work has recently been published in PNAS: http://dx.doi.org/10.1073/pnas.2023773118
#sciencenews #microscopy #biology #microbiology
PNAS
Connecting structure and function from organisms to molecules in small-animal symbioses through chemo-histo-tomography
Metabolites mediate the establishment and persistence of most interkingdom symbioses. Still, to pinpoint the metabolites each partner displays upon interaction remains the biggest challenge in studying multiorganismal assemblages. Addressing this challenge…
Visualizing atomic-scale structures with the optical force.
Researchers from Osaka University have achieved the first ever sub-nanometre resolution in photoinduced atomic force microscopy. They eliminated noise sources to map out the forces acting on quantum dots in 3D with a precision never previously achieved.
Their work has been published in Nature Communications: https://doi.org/10.1038/s41467-021-24136-2
#sciencenews #microscopy #quantum
Researchers from Osaka University have achieved the first ever sub-nanometre resolution in photoinduced atomic force microscopy. They eliminated noise sources to map out the forces acting on quantum dots in 3D with a precision never previously achieved.
Their work has been published in Nature Communications: https://doi.org/10.1038/s41467-021-24136-2
#sciencenews #microscopy #quantum
Nature
Optical force mapping at the single-nanometre scale
Nature Communications - Direct visualisation of 3D vector distributions of photoinduced fields can shed light on the optical and mechanical behaviour of different materials. Here, the authors...