ИБХФ РАН. Новости
1.13K subscribers
581 photos
30 videos
7 files
1.11K links
Новостной канал Федерального государственного бюджетного учреждения науки Института биохимической физики им. Н.М. Эмануэля Российской академии наук

Официальный сайт ИБХФ РАН: https://biochemphysics.ru/

Предложить новость: @A_V_Bychkova
Download Telegram
​​❗️Для научных сотрудников в области биохимии, биофизики и биоинженерии, а также всех читателей, которым могут быть интересны направления работы ИБХФ РАН и полезны наши контакты:

🔹 В лаборатории математической биофизики Института биохимической физики им. Н.М. Эмануэля РАН разработаны методы машинного обучения для создания алгоритмов диагностики и прогнозирования по многопараметрическим базам данных. 🔸 В комплекс входят стандартные методы машинного обучения (градиентный и адаптивный бустинги, решающие деревья, метод опорных векторов, метод ближайших соседей, логистическая регрессия, линейный дискриминантный анализ, нейронные сети) и оригинальные методы, основанные на логико-статистической подходе (оптимально достоверные разбиения и статистически взвешенные синдромы). Из лучших методов при решении конкретной задачи классификации можно создавать ансамбль, достигая наилучших результатов распознавания. 🔹Предусмотрены 4 вида контроля: чистый контроль – на выборке, не участвовавшей в обучении, скользящий контроль (K-fold СV и Leave-one-out) и Монте-Карло. 🔸 Преимущество перед нейронными сетями: прозрачность решения, набор значимых показателей, вычисленных с помощью перестановочного теста, план действий по переводу объекта в благоприятный класс. Работа с методами не предусматривает знание программирования. 🔹 Возможно предсказание свойств химических соединений, такие задачи успешно решали с помощью наших методов. Может быть решена и задача QSAR (quantative structure activity relationship) - прогноз активности по химической формуле для малых выборок.

Лаборатория мат. биофизики предлагает коллегам из ИБХФ РАН и ФИЦ ХФ РАН сотрудничество и использование описанных выше подходов.

Контакты:
8 903 253 84 23
👩‍💻 Анна Викторовна Кузнецова, к.б.н.

#сотрудничество #ИБХФ #ИБХФРАН #предложение #наукаИБХФ
​​❗️Система Анализа Данных (САД) Data Master Azforus – многопараметрический анализ данных методами ML (прим.: машинного обучения) без программирования.

Предлагаем демоверсию для небольшой обучающей выборки: 150 объектов – 30 показателей. Автоматизирована задача классификации, предусмотрены наглядные отчеты, план действий по переводу объекта в другую (благоприятную) группу. 

🔸 В комплекс входят стандартные методы машинного обучения и авторские методы, основанные на логико-статистической подходе (оптимально достоверные разбиения и статистически взвешенные синдромы). Из лучших методов при решении конкретной задачи классификации можно создавать ансамбль, достигая наилучших результатов распознавания.

🔸 Преимущества перед нейронными сетями: прозрачность решения, выявление набора значимых показателей, вычисленных с помощью перестановочного теста. Работа с методами не предполагает знание программирования.

🔸 Возможно предсказание свойств химических соединений, так называемый рациональный химический дизайн.

Скачать демо-версию 🌐

Контакты:

👩‍💻 Анна Викторовна Кузнецова, к.б.н., с.н.с. лаборатории математической биофизики ИБХФ РАН; 8 903 253 84 23 - telegram, WhatsApp

#сотрудничество #наукаИБХФ #ИБХФ #ИБХФРАН  #объявление