покидайте, пожалуйста, хорошие материалы / посты про гроус, которые встречали за последнее время
2024 tech reality check:
1. Никто не даст вам $2M на идею (если вы не из open ai).
2. Создание стоимости компании вообще не означает удержание стоимости.
3. Stock based compensation - это все еще компенсация; дилюшн не бесплатный.
4. Маржинальность решает.
5. Вижн и понимание создают 5% долгосрочной стоимости; кэш флоу и экзекьюшн делает остальное
6. Быстрый скейл вообще не про рекламу в Fb
7. Задаривание плюшками юзеров и гивы - это отличный способ привлечь, но не удержать их
8. Topline growth не заменяет удержание и внимание к bottomline
9. Оказывается, что надежда фаундеров не переходит в terminal value
10. 4-х часовая рабочая неделя никогда не имела никакого смысла
11. Remote норм, но лучшая продуктивность в офисе
12. AI wrappers приуныли
13. $20M pre-seed SAFEs в AI wrappers стартапы на ранней стадии умерли
дополняйте в комментах ⬇️
1. Никто не даст вам $2M на идею (если вы не из open ai).
2. Создание стоимости компании вообще не означает удержание стоимости.
3. Stock based compensation - это все еще компенсация; дилюшн не бесплатный.
4. Маржинальность решает.
5. Вижн и понимание создают 5% долгосрочной стоимости; кэш флоу и экзекьюшн делает остальное
6. Быстрый скейл вообще не про рекламу в Fb
7. Задаривание плюшками юзеров и гивы - это отличный способ привлечь, но не удержать их
8. Topline growth не заменяет удержание и внимание к bottomline
9. Оказывается, что надежда фаундеров не переходит в terminal value
10. 4-х часовая рабочая неделя никогда не имела никакого смысла
11. Remote норм, но лучшая продуктивность в офисе
12. AI wrappers приуныли
13. $20M pre-seed SAFEs в AI wrappers стартапы на ранней стадии умерли
дополняйте в комментах ⬇️
AI Engine Optimization // Data Analysis
LLM vs. LLM+RAG
* Early versions of LLMs were based on next-word prediction, which is different from search
* More and more, AI chat and search use RAG+LLM
* RAG (retrieval augmented generation) starts with a search (retrieval), then summarizes/reforms the search as an answer (generation)
* Perplexity has built its own search engine, CoPilot frequently uses Bing, and OpenAI is building SearchGPT - so AI Search is moving towards RAG+LLM more and more
* Therefore, optimizing for AI Search starts with optimizing for search using traditional SEO strategies + is an evolution of new optimization strategies
AI Chat Traffic Analysis
* Method: We looked at anonymized traffic across several sites to assess the composition and growth rate of traffic and conversions from AI chat
* We are seeing a roughly 68% increase in traffic coming directly from ChatGPT since August 2024
* 87% of traffic is coming from ChatGPT, 7% from Perplexity, 4% Gemini
* Roughly 90% of visits go directly to the homepage and not to specific landing pages
* This is of note because a large % of times when publishers appear in AI chat, specific landing pages (not their homepage) are cited in answers
* This highlights that these numbers are likely undercounting the full impact of appearing in AI chat because it’s common for users to see an answer in AI chat, then open a new tab and go directly to that site, which means that visit is not attributed to AI chat
Keyword Research > Question Research
* "Question research" is the new keyword research
* Rather than finding keywords, instead we need to find all the ways people ask questions for our product
* We may target thousands of keywords, but questions vary more than keywords, thus there are millions of variations of questions
* Keyword research can use known data from Google and other keyword tools
* There are no tools to find what questions people ask - new strategies will need to be made to source how people ask questions
* Based on the questions people ask, we create landing pages and content to target questions similar to SEO
Good Content for Questions
* "Good content" in Google SEO is comprehensive and answers the questions users have for that page via the presence of TF-IDF terms, sub-topics, and embeddings
* A landing page that targets a topic in AI Search needs to first understand the thousands of questions users have for that topic, then answer as many of them as possible
Citation Optimization
* RAG+LLM performs a search, looks at multiple pages, summarizes them, and cites its sources
* Companies can optimize for being cited using SEO strategies similar
* Forbes and NerdWallet can try to optimize for being a citation for "best credit cards" across many variations of credit cards
SERP Tracking > AI Answer Tracking
* SEO tracks single positions for keywords (e.g. I rank #5 for "best credit card")
* AI Answer Tracking is a distribution or frequency across surfaces, question variants, and question runs
LLM vs. LLM+RAG
* Early versions of LLMs were based on next-word prediction, which is different from search
* More and more, AI chat and search use RAG+LLM
* RAG (retrieval augmented generation) starts with a search (retrieval), then summarizes/reforms the search as an answer (generation)
* Perplexity has built its own search engine, CoPilot frequently uses Bing, and OpenAI is building SearchGPT - so AI Search is moving towards RAG+LLM more and more
* Therefore, optimizing for AI Search starts with optimizing for search using traditional SEO strategies + is an evolution of new optimization strategies
AI Chat Traffic Analysis
* Method: We looked at anonymized traffic across several sites to assess the composition and growth rate of traffic and conversions from AI chat
* We are seeing a roughly 68% increase in traffic coming directly from ChatGPT since August 2024
* 87% of traffic is coming from ChatGPT, 7% from Perplexity, 4% Gemini
* Roughly 90% of visits go directly to the homepage and not to specific landing pages
* This is of note because a large % of times when publishers appear in AI chat, specific landing pages (not their homepage) are cited in answers
* This highlights that these numbers are likely undercounting the full impact of appearing in AI chat because it’s common for users to see an answer in AI chat, then open a new tab and go directly to that site, which means that visit is not attributed to AI chat
Keyword Research > Question Research
* "Question research" is the new keyword research
* Rather than finding keywords, instead we need to find all the ways people ask questions for our product
* We may target thousands of keywords, but questions vary more than keywords, thus there are millions of variations of questions
* Keyword research can use known data from Google and other keyword tools
* There are no tools to find what questions people ask - new strategies will need to be made to source how people ask questions
* Based on the questions people ask, we create landing pages and content to target questions similar to SEO
Good Content for Questions
* "Good content" in Google SEO is comprehensive and answers the questions users have for that page via the presence of TF-IDF terms, sub-topics, and embeddings
* A landing page that targets a topic in AI Search needs to first understand the thousands of questions users have for that topic, then answer as many of them as possible
Citation Optimization
* RAG+LLM performs a search, looks at multiple pages, summarizes them, and cites its sources
* Companies can optimize for being cited using SEO strategies similar
* Forbes and NerdWallet can try to optimize for being a citation for "best credit cards" across many variations of credit cards
SERP Tracking > AI Answer Tracking
* SEO tracks single positions for keywords (e.g. I rank #5 for "best credit card")
* AI Answer Tracking is a distribution or frequency across surfaces, question variants, and question runs
GitHub выпустили свой ежегодный отчет об IT-индустрии:
● Ожидается, что к 2028 г. Индия превзойдет США по числу IT-разработчиков.
● 6 место по количеству разработчиков заняла Россия.
● Число разработчиков по всему миру стремительно растёт, особенно в Африке, Латинской Америке и Азии.
https://github.blog/news-insights/octoverse/octoverse-2024/
● Ожидается, что к 2028 г. Индия превзойдет США по числу IT-разработчиков.
● 6 место по количеству разработчиков заняла Россия.
● Число разработчиков по всему миру стремительно растёт, особенно в Африке, Латинской Америке и Азии.
https://github.blog/news-insights/octoverse/octoverse-2024/
The GitHub Blog
Octoverse: AI leads Python to top language as the number of global developers surges
In this year’s Octoverse report, we study how public and open source activity on GitHub shows how AI is expanding as the global developer community surges in size.
из линкедина фаундера Late Checkout
consumer mobile apps are back and here's why:
scroll through tiktok shop and you'll notice something's changing. influencers who used to push supplement stacks and skincare are quietly switching to apps. makes perfect sense when you think about it.
selling physical products is brutal. convince a stranger to drop $50, deal with shipping, handle returns, pray they reorder. but apps is a diff story.
$5/month subscription, zero headaches, pure margin. plus every user becomes 12x yearly revenue.
smart founders are spotting the playbook
1) build a world class app mvp using ai tools
2) build mostly ai apps because there is demand from consumer to try these apps
3) partner with tiktok shop creators who already know how to sell
4) split the recurring revenue.
5) vc optional but then you cant dividend out the cash
just profitable software from day one.
i built dozens of apps from 2009-2012 when an app store feature meant 10k downloads daily. then mobile died as distribution became impossible.
but now tiktok solved distribution overnight.
so that's why consumer mobile is back.
these aren't fancy vc-backed apps. they're bootstrapped profit machines printing money from day one.
dare i say...
-------
что думаете?
consumer mobile apps are back and here's why:
scroll through tiktok shop and you'll notice something's changing. influencers who used to push supplement stacks and skincare are quietly switching to apps. makes perfect sense when you think about it.
selling physical products is brutal. convince a stranger to drop $50, deal with shipping, handle returns, pray they reorder. but apps is a diff story.
$5/month subscription, zero headaches, pure margin. plus every user becomes 12x yearly revenue.
smart founders are spotting the playbook
1) build a world class app mvp using ai tools
2) build mostly ai apps because there is demand from consumer to try these apps
3) partner with tiktok shop creators who already know how to sell
4) split the recurring revenue.
5) vc optional but then you cant dividend out the cash
just profitable software from day one.
i built dozens of apps from 2009-2012 when an app store feature meant 10k downloads daily. then mobile died as distribution became impossible.
but now tiktok solved distribution overnight.
so that's why consumer mobile is back.
these aren't fancy vc-backed apps. they're bootstrapped profit machines printing money from day one.
dare i say...
-------
что думаете?
Forwarded from Что вы мне рекламируете?
На Hustle Badger вышла большая статья о том, как правильно строить Customer Journey Map и зачем вообще она нужна 👨💻 (я также шерил вот тут CJM Делимобиля, а также тут CJM Ашана (который скоро уйдет из РФ))
Если коротко:
1. Лучше понимать опыт пользователя
2. Понять, что он чувствует, во время использования
3. Помогает лучше вместе работать разным отделам
4. Хороший способ найти проблемы для решения (особенно если вам нечего далть)
Там же есть шаблоны для создания этой карты в Miro и Figma
Если коротко:
1. Лучше понимать опыт пользователя
2. Понять, что он чувствует, во время использования
3. Помогает лучше вместе работать разным отделам
4. Хороший способ найти проблемы для решения (особенно если вам нечего далть)
Там же есть шаблоны для создания этой карты в Miro и Figma
Please open Telegram to view this post
VIEW IN TELEGRAM
1730922048910.pdf
3.9 MB
Какой прикол нашел в линкедине - продуктовый разбор активностей кампании Трампа (не самый сильный, если что)
- рекламные креативы
- лендосы
- мерч
немного статы:
- было запущено более 50.000 Ads
- крутили более 25 лендосов с разными целями
- 2 разных мерч магаза для фондирования кампании
такой же есть и про Камалу - link
- рекламные креативы
- лендосы
- мерч
немного статы:
- было запущено более 50.000 Ads
- крутили более 25 лендосов с разными целями
- 2 разных мерч магаза для фондирования кампании
такой же есть и про Камалу - link