#jupyter_notebook #computer_vision #deep_learning #inference #machine_learning #openvino
OpenVINO Notebooks are a collection of interactive Jupyter notebooks that help developers learn and experiment with the OpenVINO Toolkit. These notebooks provide an introduction to OpenVINO basics and show how to optimize deep learning inference using the API. They can be run on various platforms, including Windows, Ubuntu, macOS, and cloud services like Azure ML or Google Colab. This makes it easy for users to get started with AI development without needing extensive hardware knowledge, allowing them to focus on building applications efficiently across different devices.
https://github.com/openvinotoolkit/openvino_notebooks
OpenVINO Notebooks are a collection of interactive Jupyter notebooks that help developers learn and experiment with the OpenVINO Toolkit. These notebooks provide an introduction to OpenVINO basics and show how to optimize deep learning inference using the API. They can be run on various platforms, including Windows, Ubuntu, macOS, and cloud services like Azure ML or Google Colab. This makes it easy for users to get started with AI development without needing extensive hardware knowledge, allowing them to focus on building applications efficiently across different devices.
https://github.com/openvinotoolkit/openvino_notebooks
GitHub
GitHub - openvinotoolkit/openvino_notebooks: 📚 Jupyter notebook tutorials for OpenVINO™
📚 Jupyter notebook tutorials for OpenVINO™. Contribute to openvinotoolkit/openvino_notebooks development by creating an account on GitHub.
#cplusplus #cuda #gpu #machine_learning #machine_learning_algorithms #nvidia
cuML - RAPIDS Machine Learning Library
https://github.com/rapidsai/cuml
cuML - RAPIDS Machine Learning Library
https://github.com/rapidsai/cuml
GitHub
GitHub - rapidsai/cuml: cuML - RAPIDS Machine Learning Library
cuML - RAPIDS Machine Learning Library. Contribute to rapidsai/cuml development by creating an account on GitHub.
#python #bot #bot_framework #botkit #bots #chatbot #chatbots #chatbots_framework #conversation_driven_development #conversational_agents #conversational_ai #conversational_bots #machine_learning #machine_learning_library #mitie #natural_language_processing #nlp #nlu #rasa #spacy #wit
Rasa is an open-source framework that helps build advanced chatbots. It allows developers to create contextual assistants that can have layered conversations, making interactions more natural. Rasa supports integration with various platforms like Facebook Messenger, Slack, and Google Home Actions. This flexibility and customization capability make it a popular choice for businesses to automate customer support and enhance user experience. By using Rasa, users can create intelligent chatbots that understand and respond to user inputs effectively, improving communication and engagement.
https://github.com/RasaHQ/rasa
Rasa is an open-source framework that helps build advanced chatbots. It allows developers to create contextual assistants that can have layered conversations, making interactions more natural. Rasa supports integration with various platforms like Facebook Messenger, Slack, and Google Home Actions. This flexibility and customization capability make it a popular choice for businesses to automate customer support and enhance user experience. By using Rasa, users can create intelligent chatbots that understand and respond to user inputs effectively, improving communication and engagement.
https://github.com/RasaHQ/rasa
GitHub
GitHub - RasaHQ/rasa: 💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue…
đź’¬ Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants - R...
#cplusplus #arm #convolution #deep_learning #embedded_devices #llm #machine_learning #ml #mnn #transformer #vulkan #winograd_algorithm
MNN is a lightweight and efficient deep learning framework that helps run AI models on mobile devices and other small devices. It supports many types of AI models and can handle tasks like image recognition and language processing quickly and locally on your device. This means you can use AI features without needing to send data to the cloud, which improves privacy and speed. MNN is used in many apps, including those from Alibaba, and supports various platforms like Android and iOS. It also helps reduce the size of AI models, making them faster and more efficient.
https://github.com/alibaba/MNN
MNN is a lightweight and efficient deep learning framework that helps run AI models on mobile devices and other small devices. It supports many types of AI models and can handle tasks like image recognition and language processing quickly and locally on your device. This means you can use AI features without needing to send data to the cloud, which improves privacy and speed. MNN is used in many apps, including those from Alibaba, and supports various platforms like Android and iOS. It also helps reduce the size of AI models, making them faster and more efficient.
https://github.com/alibaba/MNN
GitHub
GitHub - alibaba/MNN: MNN is a blazing fast, lightweight deep learning framework, battle-tested by business-critical use cases…
MNN is a blazing fast, lightweight deep learning framework, battle-tested by business-critical use cases in Alibaba. Full multimodal LLM Android App:[MNN-LLM-Android](./apps/Android/MnnLlmChat/READ...
#typescript #api_client #hub #huggingface #inference #machine_learning
Hugging Face offers JavaScript libraries that let you easily use over 100,000 AI models for tasks like text generation, image creation, translation, and more, directly in your code or browser. You can create and manage model repositories, upload files, and run AI tasks such as chat completions or text-to-image generation with simple commands. These libraries work on modern environments without extra dependencies and support multiple providers, giving you flexible access to powerful AI tools. This helps you quickly add advanced AI features to your projects without deep AI expertise or complex setup.
https://github.com/huggingface/huggingface.js
Hugging Face offers JavaScript libraries that let you easily use over 100,000 AI models for tasks like text generation, image creation, translation, and more, directly in your code or browser. You can create and manage model repositories, upload files, and run AI tasks such as chat completions or text-to-image generation with simple commands. These libraries work on modern environments without extra dependencies and support multiple providers, giving you flexible access to powerful AI tools. This helps you quickly add advanced AI features to your projects without deep AI expertise or complex setup.
https://github.com/huggingface/huggingface.js
GitHub
GitHub - huggingface/huggingface.js: Use Hugging Face with JavaScript
Use Hugging Face with JavaScript. Contribute to huggingface/huggingface.js development by creating an account on GitHub.
#python #deep_learning #intel #machine_learning #neural_network #pytorch #quantization
Intel Extension for PyTorch boosts the speed of PyTorch on Intel hardware, including both CPUs and GPUs, by using special features like AVX-512, AMX, and XMX for faster calculations[5][2][4]. It supports many popular large language models (LLMs) such as Llama, Qwen, Phi, and DeepSeek, offering optimizations for different data types and easy GPU acceleration. This means you can run advanced AI models much faster and more efficiently on your Intel computer, with simple setup and support for both ready-made and custom models.
https://github.com/intel/intel-extension-for-pytorch
Intel Extension for PyTorch boosts the speed of PyTorch on Intel hardware, including both CPUs and GPUs, by using special features like AVX-512, AMX, and XMX for faster calculations[5][2][4]. It supports many popular large language models (LLMs) such as Llama, Qwen, Phi, and DeepSeek, offering optimizations for different data types and easy GPU acceleration. This means you can run advanced AI models much faster and more efficiently on your Intel computer, with simple setup and support for both ready-made and custom models.
https://github.com/intel/intel-extension-for-pytorch
GitHub
GitHub - intel/intel-extension-for-pytorch: A Python package for extending the official PyTorch that can easily obtain performance…
A Python package for extending the official PyTorch that can easily obtain performance on Intel platform - intel/intel-extension-for-pytorch
#rust #ai #ai_engineering #anthropic #artificial_intelligence #deep_learning #genai #generative_ai #gpt #large_language_models #llama #llm #llmops #llms #machine_learning #ml #ml_engineering #mlops #openai #python #rust
TensorZero is a free, open-source tool that helps you build and improve large language model (LLM) applications by using real-world data and feedback. It gives you one simple API to connect with all major LLM providers, collects data from your app’s use, and lets you easily test and improve prompts, models, and strategies. You can see how your LLMs perform, compare different options, and make them smarter, faster, and cheaper over time—all while keeping your data private and under your control. This means you get better results with less effort and cost, and your apps keep improving as you use them[1][2][3].
https://github.com/tensorzero/tensorzero
TensorZero is a free, open-source tool that helps you build and improve large language model (LLM) applications by using real-world data and feedback. It gives you one simple API to connect with all major LLM providers, collects data from your app’s use, and lets you easily test and improve prompts, models, and strategies. You can see how your LLMs perform, compare different options, and make them smarter, faster, and cheaper over time—all while keeping your data private and under your control. This means you get better results with less effort and cost, and your apps keep improving as you use them[1][2][3].
https://github.com/tensorzero/tensorzero
GitHub
GitHub - tensorzero/tensorzero: TensorZero is an open-source stack for industrial-grade LLM applications. It unifies an LLM gateway…
TensorZero is an open-source stack for industrial-grade LLM applications. It unifies an LLM gateway, observability, optimization, evaluation, and experimentation. - tensorzero/tensorzero
#typescript #agents #ai #embedders #genkit #llm #machine_learning #multimodal #rag #vector_database
Genkit is an open-source framework by Google Firebase that helps you easily build AI-powered apps using a single interface to connect many AI models like Google Gemini, OpenAI, and Anthropic. It supports JavaScript/TypeScript (stable), Go (beta), and Python (alpha), letting you create chatbots, automations, and recommendations quickly with simple code. Genkit works well with web and mobile platforms, offers tools for testing and debugging AI features locally, and lets you deploy and monitor your AI apps on Firebase or other cloud services. This saves you time and effort in developing and managing AI applications efficiently.
https://github.com/firebase/genkit
Genkit is an open-source framework by Google Firebase that helps you easily build AI-powered apps using a single interface to connect many AI models like Google Gemini, OpenAI, and Anthropic. It supports JavaScript/TypeScript (stable), Go (beta), and Python (alpha), letting you create chatbots, automations, and recommendations quickly with simple code. Genkit works well with web and mobile platforms, offers tools for testing and debugging AI features locally, and lets you deploy and monitor your AI apps on Firebase or other cloud services. This saves you time and effort in developing and managing AI applications efficiently.
https://github.com/firebase/genkit
GitHub
GitHub - firebase/genkit: Open-source framework for building AI-powered apps in JavaScript, Go, and Python, built and used in production…
Open-source framework for building AI-powered apps in JavaScript, Go, and Python, built and used in production by Google - firebase/genkit
#jupyter_notebook #ai #artificial_intelligence #chatgpt #deep_learning #from_scratch #gpt #language_model #large_language_models #llm #machine_learning #python #pytorch #transformer
You can learn how to build your own large language model (LLM) like GPT from scratch with clear, step-by-step guidance, including coding, training, and fine-tuning, all explained with examples and diagrams. This approach mirrors how big models like ChatGPT are made but is designed to run on a regular laptop without special hardware. You also get access to code for loading pretrained models and fine-tuning them for tasks like text classification or instruction following. This helps you deeply understand how LLMs work inside and lets you create your own functional AI assistant, gaining practical skills in AI development[1][2][3][4].
https://github.com/rasbt/LLMs-from-scratch
You can learn how to build your own large language model (LLM) like GPT from scratch with clear, step-by-step guidance, including coding, training, and fine-tuning, all explained with examples and diagrams. This approach mirrors how big models like ChatGPT are made but is designed to run on a regular laptop without special hardware. You also get access to code for loading pretrained models and fine-tuning them for tasks like text classification or instruction following. This helps you deeply understand how LLMs work inside and lets you create your own functional AI assistant, gaining practical skills in AI development[1][2][3][4].
https://github.com/rasbt/LLMs-from-scratch
GitHub
GitHub - rasbt/LLMs-from-scratch: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
Implement a ChatGPT-like LLM in PyTorch from scratch, step by step - rasbt/LLMs-from-scratch
#python #aws #aws_cli #aws_sdk #cloud #cloud_management #cloudformation #cloudwatch #dynamodb #ec2 #ecs #elasticsearch #iam #kinesis #lambda #machine_learning #rds #redshift #route53 #s3 #serverless
AWS Lambda lets you run code without managing servers, automatically scaling to handle any number of requests and charging you only for the compute time you use. It supports many programming languages and integrates well with other AWS services, making it ideal for tasks like real-time data processing, image handling, chatbots, and automating backups. This serverless approach saves you time and money by removing infrastructure management and adapting instantly to demand spikes, so your applications stay responsive and cost-efficient even as usage changes. Lambda is great for building scalable, event-driven applications quickly and easily.
https://github.com/donnemartin/awesome-aws
AWS Lambda lets you run code without managing servers, automatically scaling to handle any number of requests and charging you only for the compute time you use. It supports many programming languages and integrates well with other AWS services, making it ideal for tasks like real-time data processing, image handling, chatbots, and automating backups. This serverless approach saves you time and money by removing infrastructure management and adapting instantly to demand spikes, so your applications stay responsive and cost-efficient even as usage changes. Lambda is great for building scalable, event-driven applications quickly and easily.
https://github.com/donnemartin/awesome-aws
GitHub
GitHub - donnemartin/awesome-aws: A curated list of awesome Amazon Web Services (AWS) libraries, open source repos, guides, blogs…
A curated list of awesome Amazon Web Services (AWS) libraries, open source repos, guides, blogs, and other resources. Featuring the Fiery Meter of AWSome. - donnemartin/awesome-aws
#other #automl #chatgpt #data_analysis #data_science #data_visualization #data_visualizations #deep_learning #gpt #gpt_3 #jax #keras #machine_learning #ml #nlp #python #pytorch #scikit_learn #tensorflow #transformer
This is a comprehensive, regularly updated list of 920 top open-source Python machine learning libraries, organized into 34 categories like frameworks, data visualization, NLP, image processing, and more. Each project is ranked by quality using GitHub and package manager metrics, helping you find the best tools for your needs. Popular libraries like TensorFlow, PyTorch, scikit-learn, and Hugging Face transformers are included, along with specialized ones for time series, reinforcement learning, and model interpretability. This resource saves you time by guiding you to high-quality, actively maintained libraries for building, optimizing, and deploying machine learning models efficiently.
https://github.com/ml-tooling/best-of-ml-python
This is a comprehensive, regularly updated list of 920 top open-source Python machine learning libraries, organized into 34 categories like frameworks, data visualization, NLP, image processing, and more. Each project is ranked by quality using GitHub and package manager metrics, helping you find the best tools for your needs. Popular libraries like TensorFlow, PyTorch, scikit-learn, and Hugging Face transformers are included, along with specialized ones for time series, reinforcement learning, and model interpretability. This resource saves you time by guiding you to high-quality, actively maintained libraries for building, optimizing, and deploying machine learning models efficiently.
https://github.com/ml-tooling/best-of-ml-python
GitHub
GitHub - lukasmasuch/best-of-ml-python: 🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.
🏆 A ranked list of awesome machine learning Python libraries. Updated weekly. - lukasmasuch/best-of-ml-python
#python #data_mining #data_science #deep_learning #deep_reinforcement_learning #genetic_algorithm #machine_learning #machine_learning_from_scratch
This project offers Python code for many basic machine learning models and algorithms built from scratch, focusing on clear, understandable implementations rather than speed or optimization. You can learn how these algorithms work inside by running examples like polynomial regression, convolutional neural networks, clustering, and genetic algorithms. This hands-on approach helps you deeply understand machine learning concepts and build your own custom models. Using Python makes it easier because of its simple, readable code and flexibility, letting you quickly test and modify algorithms. This can improve your skills and confidence in machine learning development.
https://github.com/eriklindernoren/ML-From-Scratch
This project offers Python code for many basic machine learning models and algorithms built from scratch, focusing on clear, understandable implementations rather than speed or optimization. You can learn how these algorithms work inside by running examples like polynomial regression, convolutional neural networks, clustering, and genetic algorithms. This hands-on approach helps you deeply understand machine learning concepts and build your own custom models. Using Python makes it easier because of its simple, readable code and flexibility, letting you quickly test and modify algorithms. This can improve your skills and confidence in machine learning development.
https://github.com/eriklindernoren/ML-From-Scratch
GitHub
GitHub - eriklindernoren/ML-From-Scratch: Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models…
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep lear...
#html #data_science #education #machine_learning #machine_learning_algorithms #machinelearning #machinelearning_python #microsoft_for_beginners #ml #python #r #scikit_learn #scikit_learn_python
Microsoft’s "Machine Learning for Beginners" is a free, 12-week course with 26 lessons designed to teach classic machine learning using Python and Scikit-learn. It includes quizzes, projects, and assignments to help you learn by doing, with lessons themed around global cultures to keep it engaging. You can access solutions, videos, and even R language versions. The course is beginner-friendly, flexible, and helps build practical skills step-by-step, making it easier to understand and apply machine learning concepts in real-world scenarios. This structured approach boosts your learning retention and prepares you for further study or career growth in ML[1][5].
https://github.com/microsoft/ML-For-Beginners
Microsoft’s "Machine Learning for Beginners" is a free, 12-week course with 26 lessons designed to teach classic machine learning using Python and Scikit-learn. It includes quizzes, projects, and assignments to help you learn by doing, with lessons themed around global cultures to keep it engaging. You can access solutions, videos, and even R language versions. The course is beginner-friendly, flexible, and helps build practical skills step-by-step, making it easier to understand and apply machine learning concepts in real-world scenarios. This structured approach boosts your learning retention and prepares you for further study or career growth in ML[1][5].
https://github.com/microsoft/ML-For-Beginners
GitHub
GitHub - microsoft/ML-For-Beginners: 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all - microsoft/ML-For-Beginners
#other #artificial_intelligence #artificial_intelligence_projects #awesome #computer_vision #computer_vision_project #data_science #deep_learning #deep_learning_project #machine_learning #machine_learning_projects #nlp #nlp_projects #python
You can access a huge, constantly updated list of over 500 artificial intelligence projects with ready-to-use code covering machine learning, deep learning, computer vision, and natural language processing. This collection includes projects for beginners and advanced users, with links to tutorials, datasets, and real-world applications like chatbots, healthcare, and time series forecasting. Using this resource helps you learn AI by doing practical projects, speeding up your coding skills, and building a strong portfolio for jobs or research. It saves you time searching for quality projects and gives you tested, working code to study and modify.
https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code
You can access a huge, constantly updated list of over 500 artificial intelligence projects with ready-to-use code covering machine learning, deep learning, computer vision, and natural language processing. This collection includes projects for beginners and advanced users, with links to tutorials, datasets, and real-world applications like chatbots, healthcare, and time series forecasting. Using this resource helps you learn AI by doing practical projects, speeding up your coding skills, and building a strong portfolio for jobs or research. It saves you time searching for quality projects and gives you tested, working code to study and modify.
https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code
GitHub
GitHub - ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code: 500 AI Machine learning Deep…
500 AI Machine learning Deep learning Computer vision NLP Projects with code - ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code