GitHub Trends
10.1K subscribers
15.3K links
See what the GitHub community is most excited about today.

A bot automatically fetches new repositories from https://github.com/trending and sends them to the channel.

Author and maintainer: https://github.com/katursis
Download Telegram
#typescript #analytics #apache #apache_superset #asf #bi #business_analytics #business_intelligence #data_analysis #data_analytics #data_engineering #data_science #data_visualization #data_viz #flask #python #react #sql_editor #superset

Superset is a powerful business intelligence tool that helps you explore and visualize data easily. It offers a no-code interface for building charts, a robust SQL Editor for advanced queries, and support for nearly any SQL database or data engine. You can create beautiful visualizations, define custom dimensions and metrics quickly, and use a lightweight caching layer to reduce database load. Superset also provides extensible security roles and authentication options, an API for customization, and a cloud-native architecture designed for scale. This makes it easier to analyze and present your data in a user-friendly way, replacing or augmenting proprietary BI tools effectively.

https://github.com/apache/superset
πŸ”₯1
#python #data_analysis #data_science #data_visualization #deep_learning #deploy #gradio #gradio_interface #hacktoberfest #interface #machine_learning #models #python #python_notebook #ui #ui_components

Gradio is a Python package that helps you quickly build and share web demos for your machine learning models or any Python function. You don't need to know JavaScript, CSS, or web hosting to use it. With just a few lines of Python code, you can create a demo and share it via a public link. Gradio offers various tools like the `Interface` class for simple demos, `ChatInterface` for chatbots, and `Blocks` for more complex custom applications. It also allows easy sharing of your demos with others by generating a public URL in seconds. This makes it easy to showcase your work without technical hassle.

https://github.com/gradio-app/gradio
#jupyter_notebook #data_analysis #data_science #data_visualization #pandas #python

This curriculum is designed to help beginners learn data science over 10 weeks with 20 detailed lessons. Each lesson includes pre- and post-lesson quizzes, step-by-step guides, knowledge checks, and assignments to ensure you retain the information. You'll learn about data ethics, statistics, working with different types of data, data visualization, and the entire data science lifecycle. The project-based approach helps you build practical skills while learning. Additionally, there are resources for students and teachers to make the learning process flexible and engaging. This curriculum is beneficial because it provides a structured and interactive way to gain hands-on experience in data science, making it easier to understand and apply these skills in real-world scenarios.

https://github.com/microsoft/Data-Science-For-Beginners
πŸ‘1
#python #analytics #dagster #data_engineering #data_integration #data_orchestrator #data_pipelines #data_science #etl #metadata #mlops #orchestration #python #scheduler #workflow #workflow_automation

Dagster is a tool that helps you manage and automate your data workflows. You can define your data assets, like tables or machine learning models, using Python functions. Dagster then runs these functions at the right time and keeps your data up-to-date. It offers features like integrated lineage and observability, making it easier to track and manage your data. This tool is useful for every stage of data development, from local testing to production, and it integrates well with other popular data tools. Using Dagster, you can build reusable components, spot data quality issues early, and scale your data pipelines efficiently. This makes your work more productive and helps maintain control over complex data systems.

https://github.com/dagster-io/dagster
πŸ‘1
#jupyter_notebook #aws #data_science #deep_learning #examples #inference #jupyter_notebook #machine_learning #mlops #reinforcement_learning #sagemaker #training

SageMaker-Core is a new Python SDK for Amazon SageMaker that makes it easier to work with machine learning resources. It provides an object-oriented interface, which means you can manage resources like training jobs, models, and endpoints more intuitively. The SDK simplifies code by allowing resource chaining, eliminating the need to manually specify parameters. It also includes features like auto code completion, comprehensive documentation, and type hints, making it faster and less error-prone to write code. This helps developers customize their ML workloads more efficiently and streamline their development process.

https://github.com/aws/amazon-sagemaker-examples