Roadmap to Building AI Agents
1. Master Python Programming โ Build a solid foundation in Python, the primary language for AI development.
2. Understand RESTful APIs โ Learn how to send and receive data via APIs, a crucial part of building interactive agents.
3. Dive into Large Language Models (LLMs) โ Get a grip on how LLMs work and how they power intelligent behavior.
4. Get Hands-On with the OpenAI API โ Familiarize yourself with GPT models and tools like function calling and assistants.
5. Explore Vector Databases โ Understand how to store and search high-dimensional data efficiently.
6. Work with Embeddings โ Learn how to generate and query embeddings for context-aware responses.
7. Implement Caching and Persistent Memory โ Use databases to maintain memory across interactions.
8. Build APIs with Flask or FastAPI โ Serve your agents as web services using these Python frameworks.
9. Learn Prompt Engineering โ Master techniques to guide and control LLM responses.
10. Study Retrieval-Augmented Generation (RAG) โ Learn how to combine external knowledge with LLMs.
11. Explore Agentic Frameworks โ Use tools like LangChain and LangGraph to structure your agents.
12. Integrate External Tools โ Learn to connect agents to real-world tools and APIs (like using MCP).
13. Deploy with Docker โ Containerize your agents for consistent and scalable deployment.
14. Control Agent Behavior โ Learn how to set limits and boundaries to ensure reliable outputs.
15. Implement Safety and Guardrails โ Build in mechanisms to ensure ethical and safe agent behavior.
React โค๏ธ for more
1. Master Python Programming โ Build a solid foundation in Python, the primary language for AI development.
2. Understand RESTful APIs โ Learn how to send and receive data via APIs, a crucial part of building interactive agents.
3. Dive into Large Language Models (LLMs) โ Get a grip on how LLMs work and how they power intelligent behavior.
4. Get Hands-On with the OpenAI API โ Familiarize yourself with GPT models and tools like function calling and assistants.
5. Explore Vector Databases โ Understand how to store and search high-dimensional data efficiently.
6. Work with Embeddings โ Learn how to generate and query embeddings for context-aware responses.
7. Implement Caching and Persistent Memory โ Use databases to maintain memory across interactions.
8. Build APIs with Flask or FastAPI โ Serve your agents as web services using these Python frameworks.
9. Learn Prompt Engineering โ Master techniques to guide and control LLM responses.
10. Study Retrieval-Augmented Generation (RAG) โ Learn how to combine external knowledge with LLMs.
11. Explore Agentic Frameworks โ Use tools like LangChain and LangGraph to structure your agents.
12. Integrate External Tools โ Learn to connect agents to real-world tools and APIs (like using MCP).
13. Deploy with Docker โ Containerize your agents for consistent and scalable deployment.
14. Control Agent Behavior โ Learn how to set limits and boundaries to ensure reliable outputs.
15. Implement Safety and Guardrails โ Build in mechanisms to ensure ethical and safe agent behavior.
React โค๏ธ for more
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฌ๐ผ๐ ๐๐ฎ๐ป ๐ง๐ฎ๐ธ๐ฒ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
MIT is known for world-class educationโbut you donโt need to walk its halls to access its knowledge๐จโ๐ป๐
Thanks to edX, anyone can enroll in these free MIT-certified courses from anywhere in the world๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43eM8I2
Letโs explore 5 of the best free courses MIT has to offerโ ๏ธ
MIT is known for world-class educationโbut you donโt need to walk its halls to access its knowledge๐จโ๐ป๐
Thanks to edX, anyone can enroll in these free MIT-certified courses from anywhere in the world๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43eM8I2
Letโs explore 5 of the best free courses MIT has to offerโ ๏ธ
๐๐ฟ๐ฒ๐ฒ ๐ข๐ฟ๐ฎ๐ฐ๐น๐ฒ ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Hereโs your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course โ absolutely FREE!๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FfFOrC
No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!โ ๏ธ
Hereโs your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course โ absolutely FREE!๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FfFOrC
No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!โ ๏ธ
LLM Cheatsheet
Introduction to LLMs
- LLMs (Large Language Models) are AI systems that generate text by predicting the next word.
- Prompts are the instructions or text you give to an LLM.
- Personas allow LLMs to take on specific roles or tones.
- Learning types:
- Zero-shot (no examples given)
- One-shot (one example)
- Few-shot (a few examples)
Transformers
- The core architecture behind LLMs, using self-attention to process input sequences.
- Encoder: Understands input.
- Decoder: Generates output.
- Embeddings: Converts words into vectors.
Types of LLMs
- Encoder-only: Great for understanding (like BERT).
- Decoder-only: Best for generating text (like GPT).
- Encoder-decoder: Useful for tasks like translation and summarization (like T5).
Configuration Settings
- Decoding strategies:
- Greedy: Always picks the most likely next word.
- Beam search: Considers multiple possible sequences.
- Random sampling: Adds creativity by picking among top choices.
- Temperature: Controls randomness (higher value = more creative output).
- Top-k and Top-p: Restrict choices to the most likely words.
LLM Instruction Fine-Tuning & Evaluation
- Instruction fine-tuning: Trains LLMs to follow specific instructions.
- Task-specific fine-tuning: Focuses on a single task.
- Multi-task fine-tuning: Trains on multiple tasks for broader skills.
Model Evaluation
- Evaluating LLMs is hard-metrics like BLEU and ROUGE are common, but human judgment is often needed.
Join our WhatsApp Channel: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Introduction to LLMs
- LLMs (Large Language Models) are AI systems that generate text by predicting the next word.
- Prompts are the instructions or text you give to an LLM.
- Personas allow LLMs to take on specific roles or tones.
- Learning types:
- Zero-shot (no examples given)
- One-shot (one example)
- Few-shot (a few examples)
Transformers
- The core architecture behind LLMs, using self-attention to process input sequences.
- Encoder: Understands input.
- Decoder: Generates output.
- Embeddings: Converts words into vectors.
Types of LLMs
- Encoder-only: Great for understanding (like BERT).
- Decoder-only: Best for generating text (like GPT).
- Encoder-decoder: Useful for tasks like translation and summarization (like T5).
Configuration Settings
- Decoding strategies:
- Greedy: Always picks the most likely next word.
- Beam search: Considers multiple possible sequences.
- Random sampling: Adds creativity by picking among top choices.
- Temperature: Controls randomness (higher value = more creative output).
- Top-k and Top-p: Restrict choices to the most likely words.
LLM Instruction Fine-Tuning & Evaluation
- Instruction fine-tuning: Trains LLMs to follow specific instructions.
- Task-specific fine-tuning: Focuses on a single task.
- Multi-task fine-tuning: Trains on multiple tasks for broader skills.
Model Evaluation
- Evaluating LLMs is hard-metrics like BLEU and ROUGE are common, but human judgment is often needed.
Join our WhatsApp Channel: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐ณ+ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Hereโs your golden chance to upskill with free, industry-recognized certifications from Googleโall without spending a rupee!๐ฐ๐
These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H2YJX7
Tag them or share this post!โ ๏ธ
Hereโs your golden chance to upskill with free, industry-recognized certifications from Googleโall without spending a rupee!๐ฐ๐
These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H2YJX7
Tag them or share this post!โ ๏ธ
9 advanced coding project ideas to level up your skills:
๐ E-commerce Website โ manage products, cart, payments
๐ง AI Chatbot โ integrate NLP and machine learning
๐๏ธ File Organizer โ automate file sorting using scripts
๐ Data Dashboard โ build interactive charts with real-time data
๐ Blog Platform โ full-stack project with user authentication
๐ Location Tracker App โ use maps and geolocation APIs
๐ฆ Budgeting App โ analyze income/expenses and generate reports
๐ Markdown Editor โ real-time preview and formatting
๐ Job Tracker โ store, filter, and search job applications
Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
ENJOY LEARNING ๐๐
๐ E-commerce Website โ manage products, cart, payments
๐ง AI Chatbot โ integrate NLP and machine learning
๐๏ธ File Organizer โ automate file sorting using scripts
๐ Data Dashboard โ build interactive charts with real-time data
๐ Blog Platform โ full-stack project with user authentication
๐ Location Tracker App โ use maps and geolocation APIs
๐ฆ Budgeting App โ analyze income/expenses and generate reports
๐ Markdown Editor โ real-time preview and formatting
๐ Job Tracker โ store, filter, and search job applications
Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
ENJOY LEARNING ๐๐
๐ฅ Large Language Model Course
The popular free LLM course has just been updated.
This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.
The course is divided into 3 parts:
1๏ธโฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.
โญ๏ธ 41.4k stars on Github
๐ https://github.com/mlabonne/llm-course
#llm #course #opensource #ml
The popular free LLM course has just been updated.
This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.
The course is divided into 3 parts:
1๏ธโฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.
โญ๏ธ 41.4k stars on Github
๐ https://github.com/mlabonne/llm-course
#llm #course #opensource #ml
๐ฒ ๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐๐๐ต๐ผ๐ป, ๐ฆ๐ค๐ & ๐ ๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Looking to break into data analytics, data science, or machine learning this year?๐ป
These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ksUTFi
Enjoy Learning โ ๏ธ
Looking to break into data analytics, data science, or machine learning this year?๐ป
These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ksUTFi
Enjoy Learning โ ๏ธ
Are you looking to become a machine learning engineer? ๐ค
The algorithm brought you to the right place! ๐
I created a free and comprehensive roadmap. Letโs go through this thread and explore what you need to know to become an expert machine learning engineer:
๐ Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Hereโs what you need to focus on:
- Basic probability concepts ๐ฒ
- Inferential statistics ๐
- Regression analysis ๐
- Experimental design & A/B testing ๐
- Bayesian statistics ๐ข
- Calculus ๐งฎ
- Linear algebra ๐
๐ Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations โ๏ธ
- Control flow statements (e.g., if-else, loops) ๐
- Functions and modules ๐ง
- Error handling and exceptions โ
- Basic data structures (e.g., lists, dictionaries, tuples) ๐๏ธ
- Object-oriented programming concepts ๐งฑ
- Basic work with APIs ๐
- Detailed data structures and algorithmic thinking ๐ง
๐งช Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas ๐
- Data visualization techniques to visualize variables ๐
- Feature extraction & engineering ๐ ๏ธ
- Encoding data (different types) ๐
โ๏ธ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees ๐
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering ๐ง
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients ๐น๏ธ
Solve two types of problems:
- Regression ๐
- Classification ๐งฉ
๐ง Neural Networks
Neural networks are like computer brains that learn from examples ๐ง , made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops ๐
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns ๐ผ๏ธ
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series ๐
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
๐ธ๏ธ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs ๐ผ๏ธ
- RNNs ๐
- LSTMs โณ
๐ Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models ๐๏ธ
- Automated Testing and Continuous Integration (CI) ๐
- Continuous Delivery and Deployment (CD) ๐
- Monitoring and Logging ๐ฅ๏ธ
- Experiment Tracking and Management ๐งช
- Feature Stores ๐๏ธ
- Data Pipeline and Workflow Orchestration ๐ ๏ธ
- Infrastructure as Code (IaC) ๐๏ธ
- Model Serving and APIs ๐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
The algorithm brought you to the right place! ๐
I created a free and comprehensive roadmap. Letโs go through this thread and explore what you need to know to become an expert machine learning engineer:
๐ Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Hereโs what you need to focus on:
- Basic probability concepts ๐ฒ
- Inferential statistics ๐
- Regression analysis ๐
- Experimental design & A/B testing ๐
- Bayesian statistics ๐ข
- Calculus ๐งฎ
- Linear algebra ๐
๐ Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations โ๏ธ
- Control flow statements (e.g., if-else, loops) ๐
- Functions and modules ๐ง
- Error handling and exceptions โ
- Basic data structures (e.g., lists, dictionaries, tuples) ๐๏ธ
- Object-oriented programming concepts ๐งฑ
- Basic work with APIs ๐
- Detailed data structures and algorithmic thinking ๐ง
๐งช Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas ๐
- Data visualization techniques to visualize variables ๐
- Feature extraction & engineering ๐ ๏ธ
- Encoding data (different types) ๐
โ๏ธ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees ๐
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering ๐ง
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients ๐น๏ธ
Solve two types of problems:
- Regression ๐
- Classification ๐งฉ
๐ง Neural Networks
Neural networks are like computer brains that learn from examples ๐ง , made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops ๐
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns ๐ผ๏ธ
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series ๐
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
๐ธ๏ธ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs ๐ผ๏ธ
- RNNs ๐
- LSTMs โณ
๐ Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models ๐๏ธ
- Automated Testing and Continuous Integration (CI) ๐
- Continuous Delivery and Deployment (CD) ๐
- Monitoring and Logging ๐ฅ๏ธ
- Experiment Tracking and Management ๐งช
- Feature Stores ๐๏ธ
- Data Pipeline and Workflow Orchestration ๐ ๏ธ
- Infrastructure as Code (IaC) ๐๏ธ
- Model Serving and APIs ๐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
Forwarded from Python Projects & Resources
๐ฑ ๐ฃ๐ผ๐๐ฒ๐ฟ๐ณ๐๐น ๐ฃ๐๐๐ต๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐ฑ๐ฑ ๐๐ผ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Looking to land an internship, secure a tech job, or start freelancing in 2025?๐จโ๐ป
Python projects are one of the best ways to showcase your skills and stand out in todayโs competitive job market๐ฃ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kvrfiL
Stand out in todayโs competitive job marketโ ๏ธ
Looking to land an internship, secure a tech job, or start freelancing in 2025?๐จโ๐ป
Python projects are one of the best ways to showcase your skills and stand out in todayโs competitive job market๐ฃ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kvrfiL
Stand out in todayโs competitive job marketโ ๏ธ