Generative AI
19.4K subscribers
293 photos
2 videos
76 files
171 links
โœ… Welcome to Generative AI
๐Ÿ‘จโ€๐Ÿ’ป Join us to understand and use the tech
๐Ÿ‘ฉโ€๐Ÿ’ป Learn how to use Open AI & Chatgpt
๐Ÿค– The REAL No.1 AI Community

Admin: @coderfun

Buy ads: https://telega.io/c/generativeai_gpt
Download Telegram
List Slicing in Python ๐Ÿ‘†
Roadmap to Building AI Agents

1. Master Python Programming โ€“ Build a solid foundation in Python, the primary language for AI development.

2. Understand RESTful APIs โ€“ Learn how to send and receive data via APIs, a crucial part of building interactive agents.

3. Dive into Large Language Models (LLMs) โ€“ Get a grip on how LLMs work and how they power intelligent behavior.

4. Get Hands-On with the OpenAI API โ€“ Familiarize yourself with GPT models and tools like function calling and assistants.

5. Explore Vector Databases โ€“ Understand how to store and search high-dimensional data efficiently.

6. Work with Embeddings โ€“ Learn how to generate and query embeddings for context-aware responses.

7. Implement Caching and Persistent Memory โ€“ Use databases to maintain memory across interactions.

8. Build APIs with Flask or FastAPI โ€“ Serve your agents as web services using these Python frameworks.

9. Learn Prompt Engineering โ€“ Master techniques to guide and control LLM responses.

10. Study Retrieval-Augmented Generation (RAG) โ€“ Learn how to combine external knowledge with LLMs.

11. Explore Agentic Frameworks โ€“ Use tools like LangChain and LangGraph to structure your agents.

12. Integrate External Tools โ€“ Learn to connect agents to real-world tools and APIs (like using MCP).

13. Deploy with Docker โ€“ Containerize your agents for consistent and scalable deployment.

14. Control Agent Behavior โ€“ Learn how to set limits and boundaries to ensure reliable outputs.

15. Implement Safety and Guardrails โ€“ Build in mechanisms to ensure ethical and safe agent behavior.

React โค๏ธ for more
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—œ๐—ง ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฌ๐—ผ๐˜‚ ๐—–๐—ฎ๐—ป ๐—ง๐—ฎ๐—ธ๐—ฒ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

MIT is known for world-class educationโ€”but you donโ€™t need to walk its halls to access its knowledge๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Thanks to edX, anyone can enroll in these free MIT-certified courses from anywhere in the world๐Ÿ’ป๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43eM8I2

Letโ€™s explore 5 of the best free courses MIT has to offerโœ…๏ธ
Python Toolkit โœ…
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ข๐—ฟ๐—ฎ๐—ฐ๐—น๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Hereโ€™s your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course โ€” absolutely FREE!๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FfFOrC

No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!โœ…๏ธ
LLM Cheatsheet

Introduction to LLMs
- LLMs (Large Language Models) are AI systems that generate text by predicting the next word.
- Prompts are the instructions or text you give to an LLM.
- Personas allow LLMs to take on specific roles or tones.
- Learning types:
- Zero-shot (no examples given)
- One-shot (one example)
- Few-shot (a few examples)

Transformers
- The core architecture behind LLMs, using self-attention to process input sequences.
- Encoder: Understands input.
- Decoder: Generates output.
- Embeddings: Converts words into vectors.

Types of LLMs
- Encoder-only: Great for understanding (like BERT).
- Decoder-only: Best for generating text (like GPT).
- Encoder-decoder: Useful for tasks like translation and summarization (like T5).

Configuration Settings
- Decoding strategies:
- Greedy: Always picks the most likely next word.
- Beam search: Considers multiple possible sequences.
- Random sampling: Adds creativity by picking among top choices.
- Temperature: Controls randomness (higher value = more creative output).
- Top-k and Top-p: Restrict choices to the most likely words.

LLM Instruction Fine-Tuning & Evaluation
- Instruction fine-tuning: Trains LLMs to follow specific instructions.
- Task-specific fine-tuning: Focuses on a single task.
- Multi-task fine-tuning: Trains on multiple tasks for broader skills.

Model Evaluation
- Evaluating LLMs is hard-metrics like BLEU and ROUGE are common, but human judgment is often needed.

Join our WhatsApp Channel: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐Ÿณ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Hereโ€™s your golden chance to upskill with free, industry-recognized certifications from Googleโ€”all without spending a rupee!๐Ÿ’ฐ๐Ÿ“Œ

These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ‡๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3H2YJX7

Tag them or share this post!โœ…๏ธ
9 advanced coding project ideas to level up your skills:
๐Ÿ›’ E-commerce Website โ€” manage products, cart, payments
๐Ÿง  AI Chatbot โ€” integrate NLP and machine learning
๐Ÿ—ƒ๏ธ File Organizer โ€” automate file sorting using scripts
๐Ÿ“Š Data Dashboard โ€” build interactive charts with real-time data
๐Ÿ“š Blog Platform โ€” full-stack project with user authentication
๐Ÿ“ Location Tracker App โ€” use maps and geolocation APIs
๐Ÿฆ Budgeting App โ€” analyze income/expenses and generate reports
๐Ÿ“ Markdown Editor โ€” real-time preview and formatting
๐Ÿ” Job Tracker โ€” store, filter, and search job applications

Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ–ฅ Large Language Model Course

The popular free LLM course has just been updated.

This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.

The course is divided into 3 parts:
1๏ธโƒฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโƒฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโƒฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.

โญ๏ธ 41.4k stars on Github

๐Ÿ“Œ https://github.com/mlabonne/llm-course

#llm #course #opensource #ml