COMMON TERMINOLOGIES IN PYTHON - PART 1
Have you ever gotten into a discussion with a programmer before? Did you find some of the Terminologies mentioned strange or you didn't fully understand them?
In this series, we would be looking at the common Terminologies in python.
It is important to know these Terminologies to be able to professionally/properly explain your codes to people and/or to be able to understand what people say in an instant when these codes are mentioned. Below are a few:
IDLE (Integrated Development and Learning Environment) - this is an environment that allows you to easily write Python code. IDLE can be used to execute a single statements and create, modify, and execute Python scripts.
Python Shell - This is the interactive environment that allows you to type in python code and execute them immediately
System Python - This is the version of python that comes with your operating system
Prompt - usually represented by the symbol ">>>" and it simply means that python is waiting for you to give it some instructions
REPL (Read-Evaluate-Print-Loop) - this refers to the sequence of events in your interactive window in form of a loop (python reads the code inputted>the code is evaluated>output is printed)
Argument - this is a value that is passed to a function when called eg print("Hello World")... "Hello World" is the argument that is being passed.
Function - this is a code that takes some input, known as arguments, processes that input and produces an output called a return value. E.g print("Hello World")... print is the function
Return Value - this is the value that a function returns to the calling script or function when it completes its task (in other words, Output). E.g.
>>> print("Hello World")
Hello World
Where Hello World is your return value.
Note: A return value can be any of these variable types: handle, integer, object, or string
Script - This is a file where you store your python code in a text file and execute all of the code with a single command
Script files - this is a file containing a group of python scripts
Have you ever gotten into a discussion with a programmer before? Did you find some of the Terminologies mentioned strange or you didn't fully understand them?
In this series, we would be looking at the common Terminologies in python.
It is important to know these Terminologies to be able to professionally/properly explain your codes to people and/or to be able to understand what people say in an instant when these codes are mentioned. Below are a few:
IDLE (Integrated Development and Learning Environment) - this is an environment that allows you to easily write Python code. IDLE can be used to execute a single statements and create, modify, and execute Python scripts.
Python Shell - This is the interactive environment that allows you to type in python code and execute them immediately
System Python - This is the version of python that comes with your operating system
Prompt - usually represented by the symbol ">>>" and it simply means that python is waiting for you to give it some instructions
REPL (Read-Evaluate-Print-Loop) - this refers to the sequence of events in your interactive window in form of a loop (python reads the code inputted>the code is evaluated>output is printed)
Argument - this is a value that is passed to a function when called eg print("Hello World")... "Hello World" is the argument that is being passed.
Function - this is a code that takes some input, known as arguments, processes that input and produces an output called a return value. E.g print("Hello World")... print is the function
Return Value - this is the value that a function returns to the calling script or function when it completes its task (in other words, Output). E.g.
>>> print("Hello World")
Hello World
Where Hello World is your return value.
Note: A return value can be any of these variable types: handle, integer, object, or string
Script - This is a file where you store your python code in a text file and execute all of the code with a single command
Script files - this is a file containing a group of python scripts
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐ช๐ถ๐น๐น ๐๐ป๐๐๐ฎ๐ป๐๐น๐ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
You donโt need an Ivy League budget to learn from the best๐
Thanks to MIT OpenCourseWare, you can now access world-class data science education for free๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kmYOn1
Enjoy Learning โ ๏ธ
You donโt need an Ivy League budget to learn from the best๐
Thanks to MIT OpenCourseWare, you can now access world-class data science education for free๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kmYOn1
Enjoy Learning โ ๏ธ
OpenAI has dropped a helpful AI for coders โ the new Codex-1 model, which writes code like a top senior with 15 years of experience.
Codex-1 works within the Codex AI agent โ itโs like having a whole development team in your browser, writing code and fixing it SIMULTANEOUSLY. Plus, the agent can work on multiple tasks in parallel.
Theyโre starting the rollout today โ check it out in your sidebar.
Codex-1 works within the Codex AI agent โ itโs like having a whole development team in your browser, writing code and fixing it SIMULTANEOUSLY. Plus, the agent can work on multiple tasks in parallel.
Theyโre starting the rollout today โ check it out in your sidebar.
๐ฒ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐๐๐๐ฟ๐ฒ-๐ฃ๐ฟ๐ผ๐ผ๐ณ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!๐
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FcwrZK
Enjoy Learning โ ๏ธ
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!๐
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FcwrZK
Enjoy Learning โ ๏ธ
Roadmap to Building AI Agents
1. Master Python Programming โ Build a solid foundation in Python, the primary language for AI development.
2. Understand RESTful APIs โ Learn how to send and receive data via APIs, a crucial part of building interactive agents.
3. Dive into Large Language Models (LLMs) โ Get a grip on how LLMs work and how they power intelligent behavior.
4. Get Hands-On with the OpenAI API โ Familiarize yourself with GPT models and tools like function calling and assistants.
5. Explore Vector Databases โ Understand how to store and search high-dimensional data efficiently.
6. Work with Embeddings โ Learn how to generate and query embeddings for context-aware responses.
7. Implement Caching and Persistent Memory โ Use databases to maintain memory across interactions.
8. Build APIs with Flask or FastAPI โ Serve your agents as web services using these Python frameworks.
9. Learn Prompt Engineering โ Master techniques to guide and control LLM responses.
10. Study Retrieval-Augmented Generation (RAG) โ Learn how to combine external knowledge with LLMs.
11. Explore Agentic Frameworks โ Use tools like LangChain and LangGraph to structure your agents.
12. Integrate External Tools โ Learn to connect agents to real-world tools and APIs (like using MCP).
13. Deploy with Docker โ Containerize your agents for consistent and scalable deployment.
14. Control Agent Behavior โ Learn how to set limits and boundaries to ensure reliable outputs.
15. Implement Safety and Guardrails โ Build in mechanisms to ensure ethical and safe agent behavior.
React โค๏ธ for more
1. Master Python Programming โ Build a solid foundation in Python, the primary language for AI development.
2. Understand RESTful APIs โ Learn how to send and receive data via APIs, a crucial part of building interactive agents.
3. Dive into Large Language Models (LLMs) โ Get a grip on how LLMs work and how they power intelligent behavior.
4. Get Hands-On with the OpenAI API โ Familiarize yourself with GPT models and tools like function calling and assistants.
5. Explore Vector Databases โ Understand how to store and search high-dimensional data efficiently.
6. Work with Embeddings โ Learn how to generate and query embeddings for context-aware responses.
7. Implement Caching and Persistent Memory โ Use databases to maintain memory across interactions.
8. Build APIs with Flask or FastAPI โ Serve your agents as web services using these Python frameworks.
9. Learn Prompt Engineering โ Master techniques to guide and control LLM responses.
10. Study Retrieval-Augmented Generation (RAG) โ Learn how to combine external knowledge with LLMs.
11. Explore Agentic Frameworks โ Use tools like LangChain and LangGraph to structure your agents.
12. Integrate External Tools โ Learn to connect agents to real-world tools and APIs (like using MCP).
13. Deploy with Docker โ Containerize your agents for consistent and scalable deployment.
14. Control Agent Behavior โ Learn how to set limits and boundaries to ensure reliable outputs.
15. Implement Safety and Guardrails โ Build in mechanisms to ensure ethical and safe agent behavior.
React โค๏ธ for more
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฌ๐ผ๐ ๐๐ฎ๐ป ๐ง๐ฎ๐ธ๐ฒ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
MIT is known for world-class educationโbut you donโt need to walk its halls to access its knowledge๐จโ๐ป๐
Thanks to edX, anyone can enroll in these free MIT-certified courses from anywhere in the world๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43eM8I2
Letโs explore 5 of the best free courses MIT has to offerโ ๏ธ
MIT is known for world-class educationโbut you donโt need to walk its halls to access its knowledge๐จโ๐ป๐
Thanks to edX, anyone can enroll in these free MIT-certified courses from anywhere in the world๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43eM8I2
Letโs explore 5 of the best free courses MIT has to offerโ ๏ธ