LangChain Crash Course -Greg Lim, 2023.pdf
7.5 MB
LangChain Crash Course
Greg Lim, 2023
Greg Lim, 2023
โญ๏ธ What is Generative AI?
Generative AI typically uses machine learning models, especially deep learning models, to learn from input data and then generate new data based on the patterns and trends it has learned. This can be applied for many different purposes, from creating images, videos, sounds, text or 3D models. Generative AI is also being widely adopted in many business and industrial sectors to optimize processes, create new products and services, and improve overall organizational performance.
The latest breakthroughs like ChatGPT, a chatbot developed by OpenAI (USA) is a typical example of Generative AI. GPT Chat has the ability to create content in a variety of genres such as text responses, blogging, poetry, song lyricsโฆ without limiting language or any topic. In addition to ChatGPT, many Generative AI products are available on the market and can fully handle programming, painting, video making, data analysisโฆ
Hekate has successfully applied Generative AI in many fields: Retail and E-commerce (Coca-Cola; Pla18); Real Estate (Masterise); Public area; Governmental and non-governmental organizations.
Generative AI typically uses machine learning models, especially deep learning models, to learn from input data and then generate new data based on the patterns and trends it has learned. This can be applied for many different purposes, from creating images, videos, sounds, text or 3D models. Generative AI is also being widely adopted in many business and industrial sectors to optimize processes, create new products and services, and improve overall organizational performance.
The latest breakthroughs like ChatGPT, a chatbot developed by OpenAI (USA) is a typical example of Generative AI. GPT Chat has the ability to create content in a variety of genres such as text responses, blogging, poetry, song lyricsโฆ without limiting language or any topic. In addition to ChatGPT, many Generative AI products are available on the market and can fully handle programming, painting, video making, data analysisโฆ
Hekate has successfully applied Generative AI in many fields: Retail and E-commerce (Coca-Cola; Pla18); Real Estate (Masterise); Public area; Governmental and non-governmental organizations.
โญ๏ธ How to evaluate Generative AI models?
Three important things for a successful generative AI model are:
Quality: For applications that interact directly with users, it is most important to have high quality output. For example, in speech production, if the quality is poor, it will be difficult for the listener to understand. Similarly, when creating images, the desired results should resemble natural images.
Diversity: A good generative model is one that is capable of capturing rare cases in the data without sacrificing output quality. This helps reduce unwanted biases in learning models.
Speed: Many interactive applications require rapid creation, such as instant photo editing for use in the content creation workflow.
Three important things for a successful generative AI model are:
Quality: For applications that interact directly with users, it is most important to have high quality output. For example, in speech production, if the quality is poor, it will be difficult for the listener to understand. Similarly, when creating images, the desired results should resemble natural images.
Diversity: A good generative model is one that is capable of capturing rare cases in the data without sacrificing output quality. This helps reduce unwanted biases in learning models.
Speed: Many interactive applications require rapid creation, such as instant photo editing for use in the content creation workflow.
โญ๏ธ What are the applications of Generative AI?
Generative AI is a powerful tool to standardize the workflow of innovators, engineers, researchers, scientists, and more. Use cases and capabilities span all sectors and individuals.
Generative AI models can take inputs like text, images, audio, video, and code and generate new content in any of the methods mentioned. For example, it can turn input text into images, turn images into songs, or turn videos into text.
Generative AI is a powerful tool to standardize the workflow of innovators, engineers, researchers, scientists, and more. Use cases and capabilities span all sectors and individuals.
Generative AI models can take inputs like text, images, audio, video, and code and generate new content in any of the methods mentioned. For example, it can turn input text into images, turn images into songs, or turn videos into text.
โญ๏ธ Generative AI Use Cases
Below are popular Generative AI applications
Language:
Text is the foundation of many AI models, and large language models (LLMs) are a popular example. LLM can be used for a variety of tasks such as essay creation, code development, translation, and even understanding genetic sequences.
Sound:
AI is also applied in music, audio and speech. Models can develop songs, generate audio from text, recognize objects in videos, and even generate audio for different scenes.
Image:
In the visual field, AI is widely used to create 3D images, avatars, videos, graphs, and illustrations. Models have the flexibility to create images with a variety of aesthetic styles and editing techniques.
Synthetic data:
Synthetic data is extremely important for training AI models when data is insufficient, limited, or simply cannot solve difficult cases with the highest accuracy. Synthetic data spans all methods and use cases and is made possible through a process called label efficient learning. Generative AI models can reduce labeling costs by generating training data automatically or by learning how to use less labeled data.
Innovative AI models are highly influential in many fields. In cars, they can help develop 3D worlds and simulations, as well as train autonomous vehicles. In medicine, they can aid in medical research and weather prediction. In entertainment, from games to movies and virtual worlds, AI models help create content and enhance creativity.
Below are popular Generative AI applications
Language:
Text is the foundation of many AI models, and large language models (LLMs) are a popular example. LLM can be used for a variety of tasks such as essay creation, code development, translation, and even understanding genetic sequences.
Sound:
AI is also applied in music, audio and speech. Models can develop songs, generate audio from text, recognize objects in videos, and even generate audio for different scenes.
Image:
In the visual field, AI is widely used to create 3D images, avatars, videos, graphs, and illustrations. Models have the flexibility to create images with a variety of aesthetic styles and editing techniques.
Synthetic data:
Synthetic data is extremely important for training AI models when data is insufficient, limited, or simply cannot solve difficult cases with the highest accuracy. Synthetic data spans all methods and use cases and is made possible through a process called label efficient learning. Generative AI models can reduce labeling costs by generating training data automatically or by learning how to use less labeled data.
Innovative AI models are highly influential in many fields. In cars, they can help develop 3D worlds and simulations, as well as train autonomous vehicles. In medicine, they can aid in medical research and weather prediction. In entertainment, from games to movies and virtual worlds, AI models help create content and enhance creativity.
โญ๏ธ Benefits of Generative AI
Generative AI is one of the outstanding technologies today with many practical benefits such as:
Create Unique Content: Innovative AI algorithms are capable of generating new and unique content such as images, videos, and text that are difficult to distinguish from human-generated content. This benefits many applications such as entertainment, advertising, and creative arts.
Enhancing AI System Efficiency: Generative AI can be applied to improve the performance and accuracy of current AI systems, such as natural language processing and computer vision. For example, general AI algorithms can generate synthetic data to train and test other AI algorithms.
Discovering New Data: Innovative AI has the ability to explore and analyze complex data in new ways, helping businesses and researchers learn about hidden patterns and trends that raw data can reveal. not shown clearly.
Process Automation and Acceleration: Generative AI algorithms can help automate and accelerate a variety of tasks and processes. This saves businesses and organizations time and resources, while increasing productivity.
Generative AI is one of the outstanding technologies today with many practical benefits such as:
Create Unique Content: Innovative AI algorithms are capable of generating new and unique content such as images, videos, and text that are difficult to distinguish from human-generated content. This benefits many applications such as entertainment, advertising, and creative arts.
Enhancing AI System Efficiency: Generative AI can be applied to improve the performance and accuracy of current AI systems, such as natural language processing and computer vision. For example, general AI algorithms can generate synthetic data to train and test other AI algorithms.
Discovering New Data: Innovative AI has the ability to explore and analyze complex data in new ways, helping businesses and researchers learn about hidden patterns and trends that raw data can reveal. not shown clearly.
Process Automation and Acceleration: Generative AI algorithms can help automate and accelerate a variety of tasks and processes. This saves businesses and organizations time and resources, while increasing productivity.
๐ฅ Large Language Model Course
The popular free LLM course has just been updated.
This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.
The course is divided into 3 parts:
1๏ธโฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.
โญ๏ธ 41.4k stars on Github
๐ https://github.com/mlabonne/llm-course
#llm #course #opensource #ml
The popular free LLM course has just been updated.
This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.
The course is divided into 3 parts:
1๏ธโฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.
โญ๏ธ 41.4k stars on Github
๐ https://github.com/mlabonne/llm-course
#llm #course #opensource #ml
๐ณ ๐๐ฟ๐ฒ๐ฒ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐จ๐ฝ๐ด๐ฟ๐ฎ๐ฑ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐ผ Want to Upgrade Your Resume in 2025 โ Without Spending a Dime?๐ซ
Whether youโre in tech, marketing, business, or just looking to stand out โ adding high-quality certifications to your resume can make a huge difference๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iE6uzT
The best part? You donโt need to spend any money to do it๐ฐ๐
๐ผ Want to Upgrade Your Resume in 2025 โ Without Spending a Dime?๐ซ
Whether youโre in tech, marketing, business, or just looking to stand out โ adding high-quality certifications to your resume can make a huge difference๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iE6uzT
The best part? You donโt need to spend any money to do it๐ฐ๐