Google, Harvard, and even OpenAI are offering FREE Generative AI courses (no payment required) ๐
Here are 8 FREE courses to master AI in 2024:
1. Google AI Courses
5 courses covering generative AI from the ground up
https://www.cloudskillsboost.google/paths/118
2. Microsoft AI Course
Basics of AI, neural networks, and deep learning
https://microsoft.github.io/AI-For-Beginners/
3. Introduction to AI with Python (Harvard)
7-week course exploring AI concepts and algorithms
https://www.edx.org/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python
4. ChatGPT Prompt Engineering for Devs (OpenAI & DeepLearning)
Best practices and hands-on prompting experience
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
5. LLMOps (Google Cloud & DeepLearning)
Learn the LLMOps pipeline and deploy custom LLMs
https://www.deeplearning.ai/short-courses/llmops/
Here are 8 FREE courses to master AI in 2024:
1. Google AI Courses
5 courses covering generative AI from the ground up
https://www.cloudskillsboost.google/paths/118
2. Microsoft AI Course
Basics of AI, neural networks, and deep learning
https://microsoft.github.io/AI-For-Beginners/
3. Introduction to AI with Python (Harvard)
7-week course exploring AI concepts and algorithms
https://www.edx.org/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python
4. ChatGPT Prompt Engineering for Devs (OpenAI & DeepLearning)
Best practices and hands-on prompting experience
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
5. LLMOps (Google Cloud & DeepLearning)
Learn the LLMOps pipeline and deploy custom LLMs
https://www.deeplearning.ai/short-courses/llmops/
Forwarded from SQL Programming Resources
๐ช๐ฒ๐ฏ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Want to master web development? These free certification courses will help you build real-world full-stack skills:
โ Web Design ๐จ
โ JavaScript โก
โ Front-End Libraries ๐
โ Back-End & APIs ๐
โ Databases ๐พ
๐ก Start learning today and build your career for FREE! ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4bqbQwB
Enroll for FREE & Get Certified ๐
Want to master web development? These free certification courses will help you build real-world full-stack skills:
โ Web Design ๐จ
โ JavaScript โก
โ Front-End Libraries ๐
โ Back-End & APIs ๐
โ Databases ๐พ
๐ก Start learning today and build your career for FREE! ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4bqbQwB
Enroll for FREE & Get Certified ๐
Essential Skills to Master for Using Generative AI
1๏ธโฃ Prompt Engineering
โ๏ธ Learn how to craft clear, detailed prompts to get accurate AI-generated results.
2๏ธโฃ Data Literacy
๐ Understand data sources, biases, and how AI models process information.
3๏ธโฃ AI Ethics & Responsible Usage
โ๏ธ Know the ethical implications of AI, including bias, misinformation, and copyright issues.
4๏ธโฃ Creativity & Critical Thinking
๐ก AI enhances creativity, but human intuition is key for quality content.
5๏ธโฃ AI Tool Familiarity
๐ Get hands-on experience with tools like ChatGPT, DALLยทE, Midjourney, and Runway ML.
6๏ธโฃ Coding Basics (Optional)
๐ป Knowing Python, SQL, or APIs helps customize AI workflows and automation.
7๏ธโฃ Business & Marketing Awareness
๐ข Leverage AI for automation, branding, and customer engagement.
8๏ธโฃ Cybersecurity & Privacy Knowledge
๐ Learn how AI-generated data can be misused and ways to protect sensitive information.
9๏ธโฃ Adaptability & Continuous Learning
๐ AI evolves fastโstay updated with new trends, tools, and regulations.
Master these skills to make the most of AI in your personal and professional life! ๐ฅ
Free Generative AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
1๏ธโฃ Prompt Engineering
โ๏ธ Learn how to craft clear, detailed prompts to get accurate AI-generated results.
2๏ธโฃ Data Literacy
๐ Understand data sources, biases, and how AI models process information.
3๏ธโฃ AI Ethics & Responsible Usage
โ๏ธ Know the ethical implications of AI, including bias, misinformation, and copyright issues.
4๏ธโฃ Creativity & Critical Thinking
๐ก AI enhances creativity, but human intuition is key for quality content.
5๏ธโฃ AI Tool Familiarity
๐ Get hands-on experience with tools like ChatGPT, DALLยทE, Midjourney, and Runway ML.
6๏ธโฃ Coding Basics (Optional)
๐ป Knowing Python, SQL, or APIs helps customize AI workflows and automation.
7๏ธโฃ Business & Marketing Awareness
๐ข Leverage AI for automation, branding, and customer engagement.
8๏ธโฃ Cybersecurity & Privacy Knowledge
๐ Learn how AI-generated data can be misused and ways to protect sensitive information.
9๏ธโฃ Adaptability & Continuous Learning
๐ AI evolves fastโstay updated with new trends, tools, and regulations.
Master these skills to make the most of AI in your personal and professional life! ๐ฅ
Free Generative AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Rise_of_Generative_AI_and_ChatGPT.pdf
5.2 MB
Rise of Generative AI and ChatGPT
Utpal Chakraborty, 2023
Utpal Chakraborty, 2023
Forwarded from Artificial Intelligence
๐๐ฒ๐ฎ๐ฟ๐ป ๐ก๐ฒ๐ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ & ๐๐ฎ๐ฟ๐ป ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ฒ๐!๐
Looking to upgrade your skills in Data Science, Programming, AI, Business, and more? ๐๐ก
This platform offers FREE online courses that help you gain job-ready expertise and earn certificates to showcase your achievements! โ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41Nulbr
Donโt miss out! Start exploring today๐
Looking to upgrade your skills in Data Science, Programming, AI, Business, and more? ๐๐ก
This platform offers FREE online courses that help you gain job-ready expertise and earn certificates to showcase your achievements! โ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41Nulbr
Donโt miss out! Start exploring today๐
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ ๐
Companies Hiring:- Revvity
Role:- Data Analyst Intern
Location:- Mumbai
Qualification:- Students/Graduates
๐๐ฝ๐ฝ๐น๐ ๐๐ถ๐ป๐ธ๐:-
https://pdlink.in/4inM7qo
Apply before the link expires ๐ซ
Companies Hiring:- Revvity
Role:- Data Analyst Intern
Location:- Mumbai
Qualification:- Students/Graduates
๐๐ฝ๐ฝ๐น๐ ๐๐ถ๐ป๐ธ๐:-
https://pdlink.in/4inM7qo
Apply before the link expires ๐ซ
๐งญ Roadmap to Learn Generative AI (2025 Edition)
1. Master Python Programming (1 Month)
Learn basic syntax, data structures, and object-oriented programming.
Practice with libraries like NumPy, pandas, and Matplotlib.
Understand how to build simple applications using Python.
2. Understand Machine Learning Fundamentals (1 Month)
Grasp core concepts like supervised, unsupervised learning, and reinforcement learning.
Study algorithms such as linear regression, decision trees, k-means clustering, etc.
Learn about model evaluation metrics.
3. Dive into Deep Learning (1 Month)
Explore neural networks and architectures such as Feedforward Neural Networks (FNN), CNN, and RNN.
Learn about backpropagation, activation functions, and optimization techniques.
4. Grasp Generative Models (1 Month)
Study Autoencoders (AEs), Variational Autoencoders (VAEs), and Generative Adversarial Networks (GANs).
Understand how these models generate new data by learning from existing data.
5. Explore Natural Language Processing (NLP) (1 Month)
Learn about text preprocessing, embeddings, and sequence models.
Study the transformers architecture and attention mechanisms.
Understand how models like GPT and BERT work.
6. Engage with Generative AI Tools (1 Month)
Get hands-on with frameworks like Hugging Face for pre-trained models.
Learn to fine-tune models and build generative applications using these tools.
7. Work on Real-World Projects (Ongoing)
Apply your skills by developing projects such as chatbots, content generators, or image generators.
Continuously work on open-source projects or participate in competitions to improve your skills.
8. Join the AI Community (Ongoing)
Engage in forums, attend webinars, and follow AI researchers.
๐ Suggested 6-Month Learning Plan
Month 1: Python Programming
Month 2: Machine Learning Fundamentals
Month 3: Deep Learning Basics
Month 4: Generative Models
Month 5: Natural Language Processing
Month 6: Generative AI Tools & Real-World Projects
1. Master Python Programming (1 Month)
Learn basic syntax, data structures, and object-oriented programming.
Practice with libraries like NumPy, pandas, and Matplotlib.
Understand how to build simple applications using Python.
2. Understand Machine Learning Fundamentals (1 Month)
Grasp core concepts like supervised, unsupervised learning, and reinforcement learning.
Study algorithms such as linear regression, decision trees, k-means clustering, etc.
Learn about model evaluation metrics.
3. Dive into Deep Learning (1 Month)
Explore neural networks and architectures such as Feedforward Neural Networks (FNN), CNN, and RNN.
Learn about backpropagation, activation functions, and optimization techniques.
4. Grasp Generative Models (1 Month)
Study Autoencoders (AEs), Variational Autoencoders (VAEs), and Generative Adversarial Networks (GANs).
Understand how these models generate new data by learning from existing data.
5. Explore Natural Language Processing (NLP) (1 Month)
Learn about text preprocessing, embeddings, and sequence models.
Study the transformers architecture and attention mechanisms.
Understand how models like GPT and BERT work.
6. Engage with Generative AI Tools (1 Month)
Get hands-on with frameworks like Hugging Face for pre-trained models.
Learn to fine-tune models and build generative applications using these tools.
7. Work on Real-World Projects (Ongoing)
Apply your skills by developing projects such as chatbots, content generators, or image generators.
Continuously work on open-source projects or participate in competitions to improve your skills.
8. Join the AI Community (Ongoing)
Engage in forums, attend webinars, and follow AI researchers.
๐ Suggested 6-Month Learning Plan
Month 1: Python Programming
Month 2: Machine Learning Fundamentals
Month 3: Deep Learning Basics
Month 4: Generative Models
Month 5: Natural Language Processing
Month 6: Generative AI Tools & Real-World Projects
Forwarded from Artificial Intelligence
๐ฃ๐ผ๐๐ฒ๐ฟ๐๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ ๐๐ฟ๐ผ๐บ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐๐
โ Beginner-friendly
โ Straight from Microsoft
โ And yesโฆ a badge for that resume flex
Perfect for beginners, job seekers, & Working Professionals
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iq8QlM
Enroll for FREE & Get Certified ๐
โ Beginner-friendly
โ Straight from Microsoft
โ And yesโฆ a badge for that resume flex
Perfect for beginners, job seekers, & Working Professionals
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4iq8QlM
Enroll for FREE & Get Certified ๐
๐๐ฟ๐ฒ๐ฎ๐บ ๐๐ผ๐ฏ ๐ฎ๐ ๐๐ผ๐ผ๐ด๐น๐ฒ? ๐ง๐ต๐ฒ๐๐ฒ ๐ฐ ๐๐ฅ๐๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐ช๐ถ๐น๐น ๐๐ฒ๐น๐ฝ ๐ฌ๐ผ๐ ๐๐ฒ๐ ๐ง๐ต๐ฒ๐ฟ๐ฒ๐
Dreaming of working at Google but not sure where to even begin?๐
Start with these FREE insider resourcesโfrom building a resume that stands out to mastering the Google interview process. ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/441GCKF
Because if someone else can do it, so can you. Why not you? Why not now?โ ๏ธ
Dreaming of working at Google but not sure where to even begin?๐
Start with these FREE insider resourcesโfrom building a resume that stands out to mastering the Google interview process. ๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/441GCKF
Because if someone else can do it, so can you. Why not you? Why not now?โ ๏ธ
๐๐จ๐ฐ ๐ญ๐จ ๐๐๐ ๐ข๐ง ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ ๐๐ ๐๐ง๐ญ๐ฌ
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐ ๐จ๐ฎ๐ง๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐จ๐ ๐๐๐ง๐๐ ๐๐ง๐ ๐๐๐
โช๏ธ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.
โช๏ธ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.
โช๏ธ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.
โช๏ธ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐๐๐ฏ๐๐ง๐๐๐ ๐๐จ๐ง๐๐๐ฉ๐ญ๐ฌ ๐ข๐ง ๐๐ ๐๐ ๐๐ง๐ญ๐ฌ
โช๏ธ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.
โช๏ธ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.
โช๏ธ Introduction to AI Agents: Get an overview of AI agentsโautonomous entities that use AI to perform tasks or solve problems.
โช๏ธ Agentic Frameworks: Explore popular tools like LangChain or OpenAIโs API to build and manage AI agents.
โช๏ธ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.
โช๏ธ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.
โช๏ธ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.
โช๏ธ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.
โช๏ธ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.
โช๏ธ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.
Join for more AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐ ๐จ๐ฎ๐ง๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐จ๐ ๐๐๐ง๐๐ ๐๐ง๐ ๐๐๐
โช๏ธ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.
โช๏ธ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.
โช๏ธ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.
โช๏ธ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐๐๐ฏ๐๐ง๐๐๐ ๐๐จ๐ง๐๐๐ฉ๐ญ๐ฌ ๐ข๐ง ๐๐ ๐๐ ๐๐ง๐ญ๐ฌ
โช๏ธ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.
โช๏ธ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.
โช๏ธ Introduction to AI Agents: Get an overview of AI agentsโautonomous entities that use AI to perform tasks or solve problems.
โช๏ธ Agentic Frameworks: Explore popular tools like LangChain or OpenAIโs API to build and manage AI agents.
โช๏ธ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.
โช๏ธ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.
โช๏ธ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.
โช๏ธ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.
โช๏ธ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.
โช๏ธ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.
Join for more AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Guys, this post is a must-read if you're even remotely curious about Generative AI & LLMs!
(Save it. Share it)
TOP 10 CONCEPTS YOU CAN'T IGNORE IN GENERATIVE AI
*1. Transformers โ The Magic Behind GPT*
Forget the robots. These are the real transformers behind ChatGPT, Bard, Claude, etc. They process all the text at once (not step-by-step like RNNs) making them super smart and insanely fast.
*2. Self-Attention โ The Eye of the Model*
This is how the model pays attention to every word while generating output. Like how you remember both the first and last scene of a movie โ self-attention lets AI weigh every wordโs importance.
*3. Tokenization โ Breaking It Down*
AI doesnโt read like us. It breaks sentences into tokens (words or subwords). Even โunbelievableโ gets split as โun + believ + ableโ โ thatโs why LLMs handle language so smartly.
*4. Pretraining vs Fine-tuning*
Pretraining = Learn everything from scratch (like reading the entire internet).
Fine-tuning = Special coaching (like teaching GPT how to write code, summarize news, or mimic Shakespeare).
*5. Prompt Engineering โ Talking to AI in Its Language*
A good prompt = better response. Itโs like giving AI the right context or setting the stage properly. One word can change everything. Literally.
*6. Zero-shot, One-shot, Few-shot Learning*
Zero-shot: Model does it with no examples.
One/Few-shot: Model sees 1-2 examples and gets the hang of it.
Think of it like showing your friend how to do a dance step once, and boomโthey nail it.
Here you can find more explanation on prompting techniques
๐๐
https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
*7. Diffusion Models โ The Art Geniuses*
Behind tools like MidJourney and DALLยทE. They work by turning noise into beautyโliterally. First they add noise, then learn to reverse it to generate images.
*8. Reinforcement Learning from Human Feedback (RLHF)*
AI gets better with feedback. This is the secret sauce behind making models like ChatGPT behave well (and not go rogue).
*9. Hallucinations โ AI's Confident Lies*
Yes, AI can make things up and sound 100% sure. Thatโs called a hallucination. Knowing when itโs real vs fake is key.
*10. Multimodal Models*
These are the models that donโt just understand text but also images, videos, and audio. Think GPT-4 Vision or Gemini. The future is not just text โ itโs everything together.
Generative AI is not just buzz. It's the backbone of a new era.
Credits: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
(Save it. Share it)
TOP 10 CONCEPTS YOU CAN'T IGNORE IN GENERATIVE AI
*1. Transformers โ The Magic Behind GPT*
Forget the robots. These are the real transformers behind ChatGPT, Bard, Claude, etc. They process all the text at once (not step-by-step like RNNs) making them super smart and insanely fast.
*2. Self-Attention โ The Eye of the Model*
This is how the model pays attention to every word while generating output. Like how you remember both the first and last scene of a movie โ self-attention lets AI weigh every wordโs importance.
*3. Tokenization โ Breaking It Down*
AI doesnโt read like us. It breaks sentences into tokens (words or subwords). Even โunbelievableโ gets split as โun + believ + ableโ โ thatโs why LLMs handle language so smartly.
*4. Pretraining vs Fine-tuning*
Pretraining = Learn everything from scratch (like reading the entire internet).
Fine-tuning = Special coaching (like teaching GPT how to write code, summarize news, or mimic Shakespeare).
*5. Prompt Engineering โ Talking to AI in Its Language*
A good prompt = better response. Itโs like giving AI the right context or setting the stage properly. One word can change everything. Literally.
*6. Zero-shot, One-shot, Few-shot Learning*
Zero-shot: Model does it with no examples.
One/Few-shot: Model sees 1-2 examples and gets the hang of it.
Think of it like showing your friend how to do a dance step once, and boomโthey nail it.
Here you can find more explanation on prompting techniques
๐๐
https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
*7. Diffusion Models โ The Art Geniuses*
Behind tools like MidJourney and DALLยทE. They work by turning noise into beautyโliterally. First they add noise, then learn to reverse it to generate images.
*8. Reinforcement Learning from Human Feedback (RLHF)*
AI gets better with feedback. This is the secret sauce behind making models like ChatGPT behave well (and not go rogue).
*9. Hallucinations โ AI's Confident Lies*
Yes, AI can make things up and sound 100% sure. Thatโs called a hallucination. Knowing when itโs real vs fake is key.
*10. Multimodal Models*
These are the models that donโt just understand text but also images, videos, and audio. Think GPT-4 Vision or Gemini. The future is not just text โ itโs everything together.
Generative AI is not just buzz. It's the backbone of a new era.
Credits: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U