Generative AI
23K subscribers
476 photos
2 videos
80 files
248 links
โœ… Welcome to Generative AI
๐Ÿ‘จโ€๐Ÿ’ป Join us to understand and use the tech
๐Ÿ‘ฉโ€๐Ÿ’ป Learn how to use Open AI & Chatgpt
๐Ÿค– The REAL No.1 AI Community

Admin: @coderfun
Download Telegram
AI Engineer Roadmap
๐Ÿ”ฅ4
If you're into deep learning, then you know that students usually one of the two paths:

- Computer vision
- Natural language processing (NLP)

If you're into NLP, here are 5 fundamental concepts you should know:

Before we start, What is NLP?

Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on the interaction between computers and humans through language.

It enables machines to understand, interpret, and respond to human language in a way that is both meaningful and useful.

Data scientists need NLP to analyze, process, and generate insights from large volumes of textual data, aiding in tasks ranging from sentiment analysis to automated summarization.

Tokenization

Tokenization involves breaking down text into smaller units, such as words or phrases. This is the first step in preprocessing textual data for further analysis or NLP applications.

Part-of-Speech Tagging:

This process involves identifying the part of speech for each word in a sentence (e.g., noun, verb, adjective). It is crucial for various NLP tasks that require understanding the grammatical structure of text.

Stemming and Lemmatization

These techniques reduce words to their base or root form. Stemming cuts off prefixes and suffixes, while lemmatization considers the morphological analysis of the words, leading to more accurate results.

Named Entity Recognition (NER)

NER identifies and classifies named entities in text into predefined categories such as the names of persons, organizations, locations, etc. It's essential for tasks like data extraction from documents and content classification.

Sentiment Analysis

This technique determines the emotional tone behind a body of text. It's widely used in business and social media monitoring to gauge public opinion and customer sentiment.
๐Ÿ‘2
If you want to Excel in AI and become an expert, master these essential concepts:

Core AI Concepts:

โ€ข Machine Learning (ML) โ€“ Supervised, Unsupervised, and Reinforcement Learning
โ€ข Deep Learning (DL) โ€“ Neural Networks, CNNs, RNNs, Transformers
โ€ข Natural Language Processing (NLP) โ€“ Text processing, LLMs (GPT, BERT)
โ€ข Computer Vision (CV) โ€“ Image classification, Object detection
โ€ข AI Ethics & Bias โ€“ Responsible AI development

Essential AI Tools & Frameworks:

โ€ข Python Libraries โ€“ TensorFlow, PyTorch, Scikit-Learn, Keras
โ€ข Data Processing โ€“ Pandas, NumPy, OpenCV, NLTK, SpaCy
โ€ข Pretrained Models โ€“ OpenAI GPT, Stable Diffusion, DALLยทE, CLIP
โ€ข MLOps & Deployment โ€“ Docker, FastAPI, Hugging Face, Flask, Gradio

Mathematical Foundations:

โ€ข Linear Algebra โ€“ Vectors, Matrices, Tensors
โ€ข Probability & Statistics โ€“ Bayesโ€™ Theorem, Hypothesis Testing
โ€ข Optimization โ€“ Gradient Descent, Backpropagation
AI in Real-World Applications:
โ€ข Chatbots & Virtual Assistants โ€“ Build AI-powered bots
โ€ข Recommendation Systems โ€“ Personalized content suggestions
โ€ข Autonomous Systems โ€“ Self-driving cars, Robotics
โ€ข AI in Healthcare โ€“ Disease prediction, Medical imaging

Future Trends in AI:

โ€ข AGI (Artificial General Intelligence) โ€“ Next-level AI development
โ€ข AI in Business & Automation โ€“ AI-powered decision-making
โ€ข Low-Code/No-Code AI โ€“ Democratizing AI for everyone

Free AI Resources:https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E

Like it if you need a complete tutorial on all these topics! ๐Ÿ‘โค๏ธ
๐Ÿ”ฅ1
How to revolutionize Hollywood with AI.

Unlock new possibilities:

1. Voice Cloning

Clone voices of Hollywood icons:

โ€ข Legally clone and use voices with permission.
โ€ข Recreate iconic voices for new projects.
โ€ข Preserve legendary performances for future generations.

2. Custom Voices

Create unique voices for your projects:

โ€ข Generate up to 20 seconds of dialogue.
โ€ข Select from preset voice options or create your own.

3. Lip Sync Tool

Bring still characters to life:

โ€ข Use ElevenLabs's Lip Sync tool.
โ€ข Select a face and add a script.
โ€ข Generate videos with synchronized lip movements.

AI is reshaping the industry, voice cloning is part of a broader trend.

Filmmakers can now recreate voices of iconic actors.
๐Ÿ‘1
Want to build your first AI agent?

Join a live hands-on session by GeeksforGeeks & Salesforce for working professionals

- Build with Agent Builder

- Assign real actions

- Get a free certificate of participation

Registeration link:๐Ÿ‘‡
https://gfgcdn.com/tu/V4t/
Step-by-Step Approach to Learn Python
โžŠ Learn the Basics โ†’ Syntax, Variables, Data Types (int, float, string, boolean)
โ†“
โž‹ Control Flow โ†’ If-Else, Loops (For, While), List Comprehensions
โ†“
โžŒ Data Structures โ†’ Lists, Tuples, Sets, Dictionaries
โ†“
โž Functions & Modules โ†’ Defining Functions, Lambda Functions, Importing Modules
โ†“
โžŽ File Handling โ†’ Reading/Writing Files, CSV, JSON
โ†“
โž Object-Oriented Programming (OOP) โ†’ Classes, Objects, Inheritance, Polymorphism
โ†“
โž Error Handling & Debugging โ†’ Try-Except, Logging, Debugging Techniques
โ†“
โž‘ Advanced Topics โ†’ Regular Expressions, Multi-threading, Decorators, Generators

Free Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
Python Libraries for Generative AI
๐Ÿ”ฅ1
Google, Harvard, and even OpenAI are offering FREE Generative AI courses (no payment required) ๐ŸŽ“

Here are 8 FREE courses to master AI in 2024:

1. Google AI Courses
5 courses covering generative AI from the ground up
https://www.cloudskillsboost.google/paths/118

2. Microsoft AI Course
Basics of AI, neural networks, and deep learning
https://microsoft.github.io/AI-For-Beginners/

3. Introduction to AI with Python (Harvard)
7-week course exploring AI concepts and algorithms
https://www.edx.org/learn/artificial-intelligence/harvard-university-cs50-s-introduction-to-artificial-intelligence-with-python

4. ChatGPT Prompt Engineering for Devs (OpenAI & DeepLearning)
Best practices and hands-on prompting experience
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/

5. LLMOps (Google Cloud & DeepLearning)
Learn the LLMOps pipeline and deploy custom LLMs
https://www.deeplearning.ai/short-courses/llmops/
๐Ÿ‘2
Essential Skills to Master for Using Generative AI

1๏ธโƒฃ Prompt Engineering
โœ๏ธ Learn how to craft clear, detailed prompts to get accurate AI-generated results.

2๏ธโƒฃ Data Literacy
๐Ÿ“Š Understand data sources, biases, and how AI models process information.

3๏ธโƒฃ AI Ethics & Responsible Usage
โš–๏ธ Know the ethical implications of AI, including bias, misinformation, and copyright issues.

4๏ธโƒฃ Creativity & Critical Thinking
๐Ÿ’ก AI enhances creativity, but human intuition is key for quality content.

5๏ธโƒฃ AI Tool Familiarity
๐Ÿ” Get hands-on experience with tools like ChatGPT, DALLยทE, Midjourney, and Runway ML.

6๏ธโƒฃ Coding Basics (Optional)
๐Ÿ’ป Knowing Python, SQL, or APIs helps customize AI workflows and automation.

7๏ธโƒฃ Business & Marketing Awareness
๐Ÿ“ข Leverage AI for automation, branding, and customer engagement.

8๏ธโƒฃ Cybersecurity & Privacy Knowledge
๐Ÿ” Learn how AI-generated data can be misused and ways to protect sensitive information.

9๏ธโƒฃ Adaptability & Continuous Learning
๐Ÿš€ AI evolves fastโ€”stay updated with new trends, tools, and regulations.

Master these skills to make the most of AI in your personal and professional life! ๐Ÿ”ฅ

Free Generative AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐Ÿ‘4
Rise_of_Generative_AI_and_ChatGPT.pdf
5.2 MB
Rise of Generative AI and ChatGPT
Utpal Chakraborty, 2023
"Here are the some Natural Language Processing Projects"
๐Ÿ‘1
๐€๐ ๐ž๐ง๐ญ๐ข๐œ ๐€๐ˆ: ๐“๐ก๐ข๐ง๐ค๐ข๐ง๐  ๐๐ž๐ฒ๐จ๐ง๐ ๐ญ๐ก๐ž ๐๐ซ๐จ๐ฆ๐ฉ๐ญ
๐Ÿค”4
๐Ÿงญ Roadmap to Learn Generative AI (2025 Edition)

1. Master Python Programming (1 Month)
Learn basic syntax, data structures, and object-oriented programming.
Practice with libraries like NumPy, pandas, and Matplotlib.
Understand how to build simple applications using Python.

2. Understand Machine Learning Fundamentals (1 Month)
Grasp core concepts like supervised, unsupervised learning, and reinforcement learning.
Study algorithms such as linear regression, decision trees, k-means clustering, etc.
Learn about model evaluation metrics.

3. Dive into Deep Learning (1 Month)
Explore neural networks and architectures such as Feedforward Neural Networks (FNN), CNN, and RNN.
Learn about backpropagation, activation functions, and optimization techniques.

4. Grasp Generative Models (1 Month)
Study Autoencoders (AEs), Variational Autoencoders (VAEs), and Generative Adversarial Networks (GANs).
Understand how these models generate new data by learning from existing data.

5. Explore Natural Language Processing (NLP) (1 Month)
Learn about text preprocessing, embeddings, and sequence models.
Study the transformers architecture and attention mechanisms.
Understand how models like GPT and BERT work.

6. Engage with Generative AI Tools (1 Month)
Get hands-on with frameworks like Hugging Face for pre-trained models.
Learn to fine-tune models and build generative applications using these tools.

7. Work on Real-World Projects (Ongoing)
Apply your skills by developing projects such as chatbots, content generators, or image generators.
Continuously work on open-source projects or participate in competitions to improve your skills.

8. Join the AI Community (Ongoing)
Engage in forums, attend webinars, and follow AI researchers.


๐Ÿ“… Suggested 6-Month Learning Plan
Month 1: Python Programming
Month 2: Machine Learning Fundamentals
Month 3: Deep Learning Basics
Month 4: Generative Models
Month 5: Natural Language Processing
Month 6: Generative AI Tools & Real-World Projects
๐Ÿ‘6โค2
Struggling to find remote jobs online?

Here is a list of useful ChatGPT Prompts
๐Ÿ‘4๐Ÿ”ฅ1
๐€๐ ๐ž๐ง๐ญ๐ข๐œ ๐€๐ˆ: ๐“๐ก๐ข๐ง๐ค๐ข๐ง๐  ๐๐ž๐ฒ๐จ๐ง๐ ๐ญ๐ก๐ž ๐๐ซ๐จ๐ฆ๐ฉ๐ญ
๐‡๐จ๐ฐ ๐ญ๐จ ๐๐ž๐ ๐ข๐ง ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐€๐ˆ ๐€๐ ๐ž๐ง๐ญ๐ฌ

๐Ÿ”น ๐‹๐ž๐ฏ๐ž๐ฅ ๐Ÿ: ๐…๐จ๐ฎ๐ง๐๐š๐ญ๐ข๐จ๐ง๐ฌ ๐จ๐Ÿ ๐†๐ž๐ง๐€๐ˆ ๐š๐ง๐ ๐‘๐€๐†

โ–ช๏ธ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.

โ–ช๏ธ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.

โ–ช๏ธ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.

โ–ช๏ธ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.

๐Ÿ”น ๐‹๐ž๐ฏ๐ž๐ฅ ๐Ÿ: ๐€๐๐ฏ๐š๐ง๐œ๐ž๐ ๐‚๐จ๐ง๐œ๐ž๐ฉ๐ญ๐ฌ ๐ข๐ง ๐€๐ˆ ๐€๐ ๐ž๐ง๐ญ๐ฌ

โ–ช๏ธ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.

โ–ช๏ธ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.

โ–ช๏ธ Introduction to AI Agents: Get an overview of AI agentsโ€”autonomous entities that use AI to perform tasks or solve problems.

โ–ช๏ธ Agentic Frameworks: Explore popular tools like LangChain or OpenAIโ€™s API to build and manage AI agents.

โ–ช๏ธ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.

โ–ช๏ธ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.

โ–ช๏ธ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.

โ–ช๏ธ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.

โ–ช๏ธ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.

โ–ช๏ธ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.

Join for more AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐Ÿ‘2