Generative AI
22.9K subscribers
476 photos
2 videos
80 files
248 links
โœ… Welcome to Generative AI
๐Ÿ‘จโ€๐Ÿ’ป Join us to understand and use the tech
๐Ÿ‘ฉโ€๐Ÿ’ป Learn how to use Open AI & Chatgpt
๐Ÿค– The REAL No.1 AI Community

Admin: @coderfun
Download Telegram
Essential Skills to Master for Using Generative AI

1๏ธโƒฃ Prompt Engineering
โœ๏ธ Learn how to craft clear, detailed prompts to get accurate AI-generated results.

2๏ธโƒฃ Data Literacy
๐Ÿ“Š Understand data sources, biases, and how AI models process information.

3๏ธโƒฃ AI Ethics & Responsible Usage
โš–๏ธ Know the ethical implications of AI, including bias, misinformation, and copyright issues.

4๏ธโƒฃ Creativity & Critical Thinking
๐Ÿ’ก AI enhances creativity, but human intuition is key for quality content.

5๏ธโƒฃ AI Tool Familiarity
๐Ÿ” Get hands-on experience with tools like ChatGPT, DALLยทE, Midjourney, and Runway ML.

6๏ธโƒฃ Coding Basics (Optional)
๐Ÿ’ป Knowing Python, SQL, or APIs helps customize AI workflows and automation.

7๏ธโƒฃ Business & Marketing Awareness
๐Ÿ“ข Leverage AI for automation, branding, and customer engagement.

8๏ธโƒฃ Cybersecurity & Privacy Knowledge
๐Ÿ” Learn how AI-generated data can be misused and ways to protect sensitive information.

9๏ธโƒฃ Adaptability & Continuous Learning
๐Ÿš€ AI evolves fastโ€”stay updated with new trends, tools, and regulations.

Master these skills to make the most of AI in your personal and professional life! ๐Ÿ”ฅ

Free Generative AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
โค2
Machine Learning (17.4%)
Models: Linear Regression, Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVMs), K-Nearest Neighbors (KNN), Naive Bayes, Neural Networks (including Deep Learning)

Techniques: Training/testing data splitting, cross-validation, feature scaling, model evaluation metrics (accuracy, precision, recall, F1-score)

Data Manipulation (13.9%)
Techniques: Data cleaning (handling missing values, outliers), data wrangling (sorting, filtering, aggregating), data transformation (scaling, normalization), merging datasets

Programming Skills (11.7%)
Languages: Python (widely used in data science for its libraries like pandas, NumPy, scikit-learn), R (another popular choice for statistical computing), SQL (for querying relational databases)

Statistics and Probability (11.7%)
Concepts: Descriptive statistics (mean, median, standard deviation), hypothesis testing, probability distributions (normal, binomial, Poisson), statistical inference

Big Data Technologies (9.3%)
Tools: Apache Spark, Hadoop, Kafka (for handling large and complex datasets)

Data Visualization (9.3%)
Techniques: Creating charts and graphs (scatter plots, bar charts, heatmaps), storytelling with data, choosing the right visualizations for the data

Model Deployment (9.3%)
Techniques: Cloud platforms (AWS SageMaker, Google Cloud AI Platform, Microsoft Azure Machine Learning), containerization (Docker), model monitoring
โค1
๐—ง๐—ผ๐—ฝ ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—›๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜๐˜€๐Ÿ˜

๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐—Ÿ๐—ถ๐—ป๐—ธ๐˜€:-๐Ÿ‘‡

S&P Global :- https://pdlink.in/3ZddwVz

IBM :- https://pdlink.in/4kDmMKE

TVS Credit :- https://pdlink.in/4mI0JVc

Sutherland :- https://pdlink.in/4mGYBgg

Other Jobs :- https://pdlink.in/44qEIDu

Apply before the link expires ๐Ÿ’ซ
Machine Learning Algorithms every data scientist should know:

๐Ÿ“Œ Supervised Learning:

๐Ÿ”น Regression
โˆŸ Linear Regression
โˆŸ Ridge & Lasso Regression
โˆŸ Polynomial Regression

๐Ÿ”น Classification
โˆŸ Logistic Regression
โˆŸ K-Nearest Neighbors (KNN)
โˆŸ Decision Tree
โˆŸ Random Forest
โˆŸ Support Vector Machine (SVM)
โˆŸ Naive Bayes
โˆŸ Gradient Boosting (XGBoost, LightGBM, CatBoost)


๐Ÿ“Œ Unsupervised Learning:

๐Ÿ”น Clustering
โˆŸ K-Means
โˆŸ Hierarchical Clustering
โˆŸ DBSCAN

๐Ÿ”น Dimensionality Reduction
โˆŸ PCA (Principal Component Analysis)
โˆŸ t-SNE
โˆŸ LDA (Linear Discriminant Analysis)


๐Ÿ“Œ Reinforcement Learning (Basics):
โˆŸ Q-Learning
โˆŸ Deep Q Network (DQN)


๐Ÿ“Œ Ensemble Techniques:
โˆŸ Bagging (Random Forest)
โˆŸ Boosting (XGBoost, AdaBoost, Gradient Boosting)
โˆŸ Stacking

Donโ€™t forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.

Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

React โค๏ธ for more free resources
โค4
Coding is just like the language we use to talk to computers. It's not the skill itself, but rather how do I innovate? How do I build something interesting for my end users?

In a recently leaked recording, AWS CEO told employees that most developers could stop coding once AI takes over, predicting this is likely to happen within 24 months.

Instead of AI replacing developers or expecting a decline in this role, I believe he meant that responsibilities of software developers would be changed significantly by AI.

Being a developer in 2025 may be different from what it was in 2020, Garman, the CEO added.

Meanwhile, Amazon's AI assistant has saved the company $260M & 4,500 developer years of work by remarkably cutting down software upgrade times.

Amazon CEO also confirmed that developers shipped 79% of AI-generated code reviews without changes.

I guess with all the uncertainty, one thing is clear: Ability to quickly adjust and collaborate with AI will be important soft skills more than ever in the of AI.
โค4
Complete Roadmap to learn Generative AI in 2 months ๐Ÿ‘‡๐Ÿ‘‡

Weeks 1-2: Foundations
1. Learn Basics of Python: If not familiar, grasp the fundamentals of Python, a widely used language in AI.
2. Understand Linear Algebra and Calculus: Brush up on basic linear algebra and calculus as they form the foundation of machine learning.

Weeks 3-4: Machine Learning Basics
1. Study Machine Learning Fundamentals: Understand concepts like supervised learning, unsupervised learning, and evaluation metrics.
2. Get Familiar with TensorFlow or PyTorch: Choose one deep learning framework and learn its basics.

Weeks 5-6: Deep Learning
1. Neural Networks: Dive into neural networks, understanding architectures, activation functions, and training processes.
2. CNNs and RNNs: Learn Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.

Weeks 7-8: Generative Models
1. Understand Generative Models: Study the theory behind generative models, focusing on GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders).
2. Hands-On Projects: Implement small generative projects to solidify your understanding. Experimenting with generative models will give you a deeper understanding of how they work. You can use platforms such as Google's Colab or Kaggle to experiment with different types of generative models.

Additional Tips:
- Read Research Papers: Explore seminal papers on GANs and VAEs to gain a deeper insight into their workings.
- Community Engagement: Join AI communities on platforms like Reddit or Stack Overflow to ask questions and learn from others.

Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.

2 months are good as a starting point to get grasp the basics of Generative AI but mastering it is very difficult as AI keeps evolving every day.

Best Resources to learn Generative AI ๐Ÿ‘‡๐Ÿ‘‡

Learn Python for Free

Prompt Engineering Course

Prompt Engineering Guide

Data Science Course

Google Cloud Generative AI Path

Unlock the power of Generative AI Models

Machine Learning with Python Free Course

Deep Learning Nanodegree Program with Real-world Projects

Join @free4unow_backup for more free courses

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
Prompt Engineering in itself does not warrant a separate job.

Most of the things you see online related to prompts (especially things said by people selling courses) is mostly just writing some crazy text to get ChatGPT to do some specific task. Most of these prompts are just been found by serendipity and are never used in any company. They may be fine for personal usage but no company is going to pay a person to try out prompts ๐Ÿ˜…. Also a lot of these prompts don't work for any other LLMs apart from ChatGPT.

You have mostly two types of jobs in this field nowadays, one is more focused on training, optimizing and deploying models. For this knowing the architecture of LLMs is critical and a strong background in PyTorch, Jax and HuggingFace is required. Other engineering skills like System Design and building APIs is also important for some jobs. This is the work you would find in companies like OpenAI, Anthropic, Cohere etc.

The other is jobs where you build applications using LLMs (this comprises of majority of the companies that do LLM related work nowadays, both product based and service based). Roles in these companies are called Applied NLP Engineer or ML Engineer, sometimes even Data Scientist roles. For this you mostly need to understand how LLMs can be used for different applications as well as know the necessary frameworks for building LLM applications (Langchain/LlamaIndex/Haystack). Apart from this, you need to know LLM specific techniques for applications like Vector Search, RAG, Structured Text Generation. This is also where some part of your role involves prompt engineering. Its not the most crucial bit, but it is important in some cases, especially when you are limited in the other techniques.
โค5๐Ÿ‘3
๐Ÿš€ What is an AI Agent?

An AI Agent is a smart software system that perceives its environment, makes decisions, and takes actionsโ€”all on its own, with minimal human help. Think of it like a digital assistant that doesnโ€™t just wait for instructions, but actually figures out what to do next and gets things done for you.

Key Abilities of AI Agents:
1. Autonomy: Acts independently, choosing the best actions to reach a goal.
2. Goal-Oriented: Always working towards specific outcomes, whether itโ€™s booking a meeting or sorting emails.
3. Adaptability: Learns from new data and changes its approach as things shiftโ€”just like a human would.
4. Reasoning: Weighs options, solves problems, and makes decisions based on logic and data.
5. Learning: Gets smarter over time by analyzing past results and improving its methods.

How Do AI Agents Work?
- They *sense* their environment (like reading emails or listening to your voice).
- They *analyze* whatโ€™s happening using AI tools like natural language processing and machine learning.
- They decide the next steps, sometimes even creating subtasks or calling external tools if needed.
- They actโ€”whether itโ€™s sending an email, booking a cab, or summarizing a report.

Real-World Examples:
- Virtual assistants (like Siri or Alexa) that manage your schedule.
- Chatbots handling customer support.
- Self-driving cars navigating traffic.
- AI tools automating business workflows or IT tasks.

Why Are AI Agents a Big Deal?
They free up your time by handling repetitive or complex tasks, work 24/7, adapt to your needs, and can even collaborate with other agents to tackle bigger challenges.

In short: AI Agents are your digital teammatesโ€”always learning, always working, and always aiming to make your life easier! ๐Ÿ˜Ž

React โ™ฅ๏ธ for more
โค8
๐Ÿฑ ๐— ๐˜‚๐˜€๐˜-๐—™๐—ผ๐—น๐—น๐—ผ๐˜„ ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ ๐—–๐—ต๐—ฎ๐—ป๐—ป๐—ฒ๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to Become a Data Scientist in 2025? Start Here!๐ŸŽฏ

If youโ€™re serious about becoming a Data Scientist in 2025, the learning doesnโ€™t have to be expensive โ€” or boring!๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kfBR5q

Perfect for beginners and aspiring prosโœ…๏ธ
โค1
Here are 7 ChatGPT Prompts to Elevate Your Skills to Superhuman Levels (PART 2):

1. Goal-Setting for Multiple Interests:

I have diverse interests in [insert multiple fields or hobbies]. Can you help me create a goal-setting strategy that allows me to pursue all of them effectively without feeling overwhelmed?

2. Rewrite in a Shakespearean Voice:

Transform this modern text [insert text] into something that could have been written by Shakespeare. Include rich metaphors, dramatic flair, and Elizabethan English to reflect his distinctive style.

3. Pomodoro Multitasking for Multiple Projects:

I have several overlapping projects in [insert field]. Can you help me create a Pomodoro Technique schedule that allows me to divide my time between each task without losing focus or momentum?

4. Curiosity-Driven Growth:

Design a mindset shift plan that encourages me to approach problems in [insert context] with curiosity instead of frustration. Include exercises that challenge my assumptions and foster a growth-oriented perspective.

5. Lead Magnet Launcher:

Assume the role of a digital marketing strategist. Suggest high-converting lead magnets that can be created in Canva for [insert business type], addressing specific audience pain points such as [insert common challenges].

6. Resume Transformation Expert:

Assume the role of a resume transformation expert. Iโ€™m updating my resume for a career change to [insert new field]. Can you help me restructure my resume to highlight my transferable skills, key accomplishments, and relevant experience that align with my new career goals?

7. Confidence-Building Specialist:

Assume the role of a confidence-building specialist. I often struggle with self-confidence in [insert context]. Can you design a 30-day confidence-boosting plan that includes positive affirmations, goal-setting, and small daily actions to build my confidence gradually?
โค5
Forwarded from Artificial Intelligence
๐ŸŽ“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ, ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ, ๐— ๐—œ๐—ง & ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ๐Ÿ˜

Why pay thousands when you can access world-class Computer Science courses for free? ๐ŸŒ

Top institutions like Harvard, Stanford, MIT, and Google offer high-quality learning resources to help you master in-demand tech skills๐Ÿ‘จโ€๐ŸŽ“๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3ZyQpFd

Perfect for students, self-learners, and career switchersโœ…๏ธ
โค1
Common Machine Learning Algorithms!

1๏ธโƒฃ Linear Regression
->Used for predicting continuous values.
->Models the relationship between dependent and independent variables by fitting a linear equation.

2๏ธโƒฃ Logistic Regression
->Ideal for binary classification problems.
->Estimates the probability that an instance belongs to a particular class.

3๏ธโƒฃ Decision Trees
->Splits data into subsets based on the value of input features.
->Easy to visualize and interpret but can be prone to overfitting.

4๏ธโƒฃ Random Forest
->An ensemble method using multiple decision trees.
->Reduces overfitting and improves accuracy by averaging multiple trees.

5๏ธโƒฃ Support Vector Machines (SVM)
->Finds the hyperplane that best separates different classes.
->Effective in high-dimensional spaces and for classification tasks.

6๏ธโƒฃ k-Nearest Neighbors (k-NN)
->Classifies data based on the majority class among the k-nearest neighbors.
->Simple and intuitive but can be computationally intensive.

7๏ธโƒฃ K-Means Clustering
->Partitions data into k clusters based on feature similarity.
->Useful for market segmentation, image compression, and more.

8๏ธโƒฃ Naive Bayes
->Based on Bayes' theorem with an assumption of independence among predictors.
->Particularly useful for text classification and spam filtering.

9๏ธโƒฃ Neural Networks
->Mimic the human brain to identify patterns in data.
->Power deep learning applications, from image recognition to natural language processing.

๐Ÿ”Ÿ Gradient Boosting Machines (GBM)
->Combines weak learners to create a strong predictive model.
->Used in various applications like ranking, classification, and regression.

Data Science & Machine Learning Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1
Roadmap to Building AI Agents

1. Master Python Programming โ€“ Build a solid foundation in Python, the primary language for AI development.

2. Understand RESTful APIs โ€“ Learn how to send and receive data via APIs, a crucial part of building interactive agents.

3. Dive into Large Language Models (LLMs) โ€“ Get a grip on how LLMs work and how they power intelligent behavior.

4. Get Hands-On with the OpenAI API โ€“ Familiarize yourself with GPT models and tools like function calling and assistants.

5. Explore Vector Databases โ€“ Understand how to store and search high-dimensional data efficiently.

6. Work with Embeddings โ€“ Learn how to generate and query embeddings for context-aware responses.

7. Implement Caching and Persistent Memory โ€“ Use databases to maintain memory across interactions.

8. Build APIs with Flask or FastAPI โ€“ Serve your agents as web services using these Python frameworks.

9. Learn Prompt Engineering โ€“ Master techniques to guide and control LLM responses.

10. Study Retrieval-Augmented Generation (RAG) โ€“ Learn how to combine external knowledge with LLMs.

11. Explore Agentic Frameworks โ€“ Use tools like LangChain and LangGraph to structure your agents.

12. Integrate External Tools โ€“ Learn to connect agents to real-world tools and APIs (like using MCP).

13. Deploy with Docker โ€“ Containerize your agents for consistent and scalable deployment.

14. Control Agent Behavior โ€“ Learn how to set limits and boundaries to ensure reliable outputs.

15. Implement Safety and Guardrails โ€“ Build in mechanisms to ensure ethical and safe agent behavior.

React โค๏ธ for more
โค7
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ผ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ง๐˜‚๐—ฏ๐—ฒ โ€“ ๐—–๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜๐—ฒ ๐—ฃ๐—น๐—ฎ๐˜†๐—น๐—ถ๐˜€๐˜ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ๐Ÿ˜

๐ŸŽฅ YouTube is the ultimate free classroomโ€”and this is your Data Analytics syllabus in one post!๐Ÿ‘จโ€๐Ÿ’ป

From Python and SQL to Power BI, Machine Learning, and Data Science, these carefully curated playlists will take you from complete beginner to job-readyโœจ๏ธ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jzVggc

Enjoy Learning โœ…๏ธ
โค2
LLM Cheatsheet

Introduction to LLMs
- LLMs (Large Language Models) are AI systems that generate text by predicting the next word.
- Prompts are the instructions or text you give to an LLM.
- Personas allow LLMs to take on specific roles or tones.
- Learning types:
- Zero-shot (no examples given)
- One-shot (one example)
- Few-shot (a few examples)

Transformers
- The core architecture behind LLMs, using self-attention to process input sequences.
- Encoder: Understands input.
- Decoder: Generates output.
- Embeddings: Converts words into vectors.

Types of LLMs
- Encoder-only: Great for understanding (like BERT).
- Decoder-only: Best for generating text (like GPT).
- Encoder-decoder: Useful for tasks like translation and summarization (like T5).

Configuration Settings
- Decoding strategies:
- Greedy: Always picks the most likely next word.
- Beam search: Considers multiple possible sequences.
- Random sampling: Adds creativity by picking among top choices.
- Temperature: Controls randomness (higher value = more creative output).
- Top-k and Top-p: Restrict choices to the most likely words.

LLM Instruction Fine-Tuning & Evaluation
- Instruction fine-tuning: Trains LLMs to follow specific instructions.
- Task-specific fine-tuning: Focuses on a single task.
- Multi-task fine-tuning: Trains on multiple tasks for broader skills.

Model Evaluation
- Evaluating LLMs is hard-metrics like BLEU and ROUGE are common, but human judgment is often needed.

Join our WhatsApp Channel: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
โค2
๐—ฆ๐—ค๐—Ÿ ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Looking to master SQL for Data Analytics or prep for your dream tech job? ๐Ÿ’ผ

These 3 Free SQL resources will help you go from beginner to job-readyโ€”without spending a single rupee! ๐Ÿ“Šโœจ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3TcvfsA

๐Ÿ’ฅ Start learning today and build the skills top companies want!โœ…๏ธ
Python Detailed Roadmap ๐Ÿš€

๐Ÿ“Œ 1. Basics
โ—ผ Data Types & Variables
โ—ผ Operators & Expressions
โ—ผ Control Flow (if, loops)

๐Ÿ“Œ 2. Functions & Modules
โ—ผ Defining Functions
โ—ผ Lambda Functions
โ—ผ Importing & Creating Modules

๐Ÿ“Œ 3. File Handling
โ—ผ Reading & Writing Files
โ—ผ Working with CSV & JSON

๐Ÿ“Œ 4. Object-Oriented Programming (OOP)
โ—ผ Classes & Objects
โ—ผ Inheritance & Polymorphism
โ—ผ Encapsulation

๐Ÿ“Œ 5. Exception Handling
โ—ผ Try-Except Blocks
โ—ผ Custom Exceptions

๐Ÿ“Œ 6. Advanced Python Concepts
โ—ผ List & Dictionary Comprehensions
โ—ผ Generators & Iterators
โ—ผ Decorators

๐Ÿ“Œ 7. Essential Libraries
โ—ผ NumPy (Arrays & Computations)
โ—ผ Pandas (Data Analysis)
โ—ผ Matplotlib & Seaborn (Visualization)

๐Ÿ“Œ 8. Web Development & APIs
โ—ผ Web Scraping (BeautifulSoup, Scrapy)
โ—ผ API Integration (Requests)
โ—ผ Flask & Django (Backend Development)

๐Ÿ“Œ 9. Automation & Scripting
โ—ผ Automating Tasks with Python
โ—ผ Working with Selenium & PyAutoGUI

๐Ÿ“Œ 10. Data Science & Machine Learning
โ—ผ Data Cleaning & Preprocessing
โ—ผ Scikit-Learn (ML Algorithms)
โ—ผ TensorFlow & PyTorch (Deep Learning)

๐Ÿ“Œ 11. Projects
โ—ผ Build Real-World Applications
โ—ผ Showcase on GitHub

๐Ÿ“Œ 12. โœ… Apply for Jobs
โ—ผ Strengthen Resume & Portfolio
โ—ผ Prepare for Technical Interviews

Like for more โค๏ธ๐Ÿ’ช
โค2
The Singularity is nearโ€”our world will soon change forever! Are you ready? Read the Manifesto now and secure your place in the future: https://aism.faith Subscribe to the channel: https://t.me/aism
โค1
๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

๐—ฆ๐—ค๐—Ÿ:- https://pdlink.in/3TcvfsA

๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ:- https://pdlink.in/3Hfpwjc

๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ:- https://pdlink.in/3ZyQpFd

๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป :- https://pdlink.in/3Hnx3wh

๐——๐—ฒ๐˜ƒ๐—ข๐—ฝ๐˜€ :- https://pdlink.in/4jyxBwS

๐—ช๐—ฒ๐—ฏ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜ :- https://pdlink.in/4jCAtJ5

Enroll for FREE & Get Certified ๐ŸŽ“
Want to become an Agent AI Expert in 2025?

๐ŸคฉAI isnโ€™t just evolvingโ€”itโ€™s transforming industries. And agentic AI is leading the charge!

Hereโ€™s your 6-step guide to mastering it:

1๏ธโƒฃ Master AI Fundamentals โ€“ Python, TensorFlow & PyTorch ๐Ÿ“Š
2๏ธโƒฃ Understand Agentic Systems โ€“ Learn reinforcement learning ๐Ÿง 
3๏ธโƒฃ Get Hands-On with Projects โ€“ OpenAI Gym & Rasa ๐Ÿ”
4๏ธโƒฃ Learn Prompt Engineering โ€“ Tools like ChatGPT & LangChain โš™๏ธ
5๏ธโƒฃ Stay Updated โ€“ Follow Arxiv, GitHub & AI newsletters ๐Ÿ“ฐ
6๏ธโƒฃ Join AI Communities โ€“ Engage in forums like Reddit & Discord ๐ŸŒ

๐ŸŽฏ AI Agent is all about creating intelligent systems that can make decisions autonomouslyโ€”perfect for businesses aiming to scale with minimal human intervention.
โค4