Top 10 machine Learning algorithms ๐๐
1. Linear Regression: Linear regression is a simple and commonly used algorithm for predicting a continuous target variable based on one or more input features. It assumes a linear relationship between the input variables and the output.
2. Logistic Regression: Logistic regression is used for binary classification problems where the target variable has two classes. It estimates the probability that a given input belongs to a particular class.
3. Decision Trees: Decision trees are a popular algorithm for both classification and regression tasks. They partition the feature space into regions based on the input variables and make predictions by following a tree-like structure.
4. Random Forest: Random forest is an ensemble learning method that combines multiple decision trees to improve prediction accuracy. It reduces overfitting and provides robust predictions by averaging the results of individual trees.
5. Support Vector Machines (SVM): SVM is a powerful algorithm for both classification and regression tasks. It finds the optimal hyperplane that separates different classes in the feature space, maximizing the margin between classes.
6. K-Nearest Neighbors (KNN): KNN is a simple and intuitive algorithm for classification and regression tasks. It makes predictions based on the similarity of input data points to their k nearest neighbors in the training set.
7. Naive Bayes: Naive Bayes is a probabilistic algorithm based on Bayes' theorem that is commonly used for classification tasks. It assumes that the features are conditionally independent given the class label.
8. Neural Networks: Neural networks are a versatile and powerful class of algorithms inspired by the human brain. They consist of interconnected layers of neurons that learn complex patterns in the data through training.
9. Gradient Boosting Machines (GBM): GBM is an ensemble learning method that builds a series of weak learners sequentially to improve prediction accuracy. It combines multiple decision trees in a boosting framework to minimize prediction errors.
10. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional space while preserving as much variance as possible. It helps in visualizing and understanding the underlying structure of the data.
1. Linear Regression: Linear regression is a simple and commonly used algorithm for predicting a continuous target variable based on one or more input features. It assumes a linear relationship between the input variables and the output.
2. Logistic Regression: Logistic regression is used for binary classification problems where the target variable has two classes. It estimates the probability that a given input belongs to a particular class.
3. Decision Trees: Decision trees are a popular algorithm for both classification and regression tasks. They partition the feature space into regions based on the input variables and make predictions by following a tree-like structure.
4. Random Forest: Random forest is an ensemble learning method that combines multiple decision trees to improve prediction accuracy. It reduces overfitting and provides robust predictions by averaging the results of individual trees.
5. Support Vector Machines (SVM): SVM is a powerful algorithm for both classification and regression tasks. It finds the optimal hyperplane that separates different classes in the feature space, maximizing the margin between classes.
6. K-Nearest Neighbors (KNN): KNN is a simple and intuitive algorithm for classification and regression tasks. It makes predictions based on the similarity of input data points to their k nearest neighbors in the training set.
7. Naive Bayes: Naive Bayes is a probabilistic algorithm based on Bayes' theorem that is commonly used for classification tasks. It assumes that the features are conditionally independent given the class label.
8. Neural Networks: Neural networks are a versatile and powerful class of algorithms inspired by the human brain. They consist of interconnected layers of neurons that learn complex patterns in the data through training.
9. Gradient Boosting Machines (GBM): GBM is an ensemble learning method that builds a series of weak learners sequentially to improve prediction accuracy. It combines multiple decision trees in a boosting framework to minimize prediction errors.
10. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional space while preserving as much variance as possible. It helps in visualizing and understanding the underlying structure of the data.
๐๐ผ๐ผ๐ธ๐ถ๐ป๐ด ๐๐ผ ๐๐๐ฎ๐ฟ๐ ๐๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ท๐ผ๐๐ฟ๐ป๐ฒ๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ?๐
๐ These free courses are designed for learners at all levels, whether youโre a beginner or an advanced professional๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41Y1WQm
Donโt Wait! Start your Learning Journey Todayโ ๏ธ
๐ These free courses are designed for learners at all levels, whether youโre a beginner or an advanced professional๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41Y1WQm
Donโt Wait! Start your Learning Journey Todayโ ๏ธ
1700001429173.pdf
427.3 KB
Top Python libraries for generative AI
Generative AI is a branch of artificial intelligence that focuses on the creation of new content, such as text, images, music, and code. This is done by training models on large datasets of existing content, which the model then uses to generate new content.
Python is a popular programming language for generative AI, as it has a wide range of libraries and frameworks available.
Generative AI is a branch of artificial intelligence that focuses on the creation of new content, such as text, images, music, and code. This is done by training models on large datasets of existing content, which the model then uses to generate new content.
Python is a popular programming language for generative AI, as it has a wide range of libraries and frameworks available.
Programming Practice Python 2023.pdf
5.4 MB
Programming Practice Python
Like for more
Like for more
Artificial Intelligence for Learning.pdf
2.8 MB
Artificial Intelligence for Learning
Donald Clark, 2024
Donald Clark, 2024
Masato_Hagiwara_Real_World_Natural_Language_Processing_Practical.pdf
11.5 MB
Real-World Natural Language Processing
Masato Hagiwara, 2021
Masato Hagiwara, 2021
Forwarded from Python Projects & Resources
๐๐ฒ๐น๐ผ๐ถ๐๐๐ฒ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐
If youโre eager to build real skills in data analytics before landing your first role, Deloitte is giving you a golden opportunityโcompletely free!
๐ก No prior experience required
๐ Ideal for students, freshers, and aspiring data analysts
โฐ Self-paced โ complete at your convenience
๐ ๐๐ฝ๐ฝ๐น๐ ๐๐ฒ๐ฟ๐ฒ (๐๐ฟ๐ฒ๐ฒ)๐:-
https://pdlink.in/4iKcgA4
Enroll for FREE & Get Certified ๐
If youโre eager to build real skills in data analytics before landing your first role, Deloitte is giving you a golden opportunityโcompletely free!
๐ก No prior experience required
๐ Ideal for students, freshers, and aspiring data analysts
โฐ Self-paced โ complete at your convenience
๐ ๐๐ฝ๐ฝ๐น๐ ๐๐ฒ๐ฟ๐ฒ (๐๐ฟ๐ฒ๐ฒ)๐:-
https://pdlink.in/4iKcgA4
Enroll for FREE & Get Certified ๐
5 Free NLP Courses Iโd Recommend for 2025
1. NLP in Python: ๐ Course
Learn fundamental NLP techniques using Python with hands-on projects.
2. AI Chatbots (No Code): ๐ Course
Build AI-powered chatbots without programming in this IBM course.
3. Data Science Basics: ๐ Course
Beginner-friendly tutorials on data analysis, mining, and modeling.
4. NLP on Google Cloud: ๐ Course
Advanced NLP with TensorFlow and Google Cloud tools for professionals.
5. NLP Specialization: ๐ Course
All the best ๐๐
1. NLP in Python: ๐ Course
Learn fundamental NLP techniques using Python with hands-on projects.
2. AI Chatbots (No Code): ๐ Course
Build AI-powered chatbots without programming in this IBM course.
3. Data Science Basics: ๐ Course
Beginner-friendly tutorials on data analysis, mining, and modeling.
4. NLP on Google Cloud: ๐ Course
Advanced NLP with TensorFlow and Google Cloud tools for professionals.
5. NLP Specialization: ๐ Course
All the best ๐๐
๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐ธ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ฆ๐๐ฎ๐ป๐ฑ ๐ข๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
As competition heats up across every industry, standing out to recruiters is more important than ever๐๐
The best part? You donโt need to spend a rupee to do it!๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4m0nNOD
๐ Start learning. Start standing outโ ๏ธ
As competition heats up across every industry, standing out to recruiters is more important than ever๐๐
The best part? You donโt need to spend a rupee to do it!๐ฐ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4m0nNOD
๐ Start learning. Start standing outโ ๏ธ
Here's a step-by-step beginner's roadmap for learning machine learning:๐ช๐
Learn Python: Start by learning Python, as it's the most popular language for machine learning. There are many resources available online, including tutorials, courses, and books.
Understand Basic Math: Familiarize yourself with basic mathematics concepts like algebra, calculus, and probability. This will form the foundation for understanding machine learning algorithms.
Learn NumPy, Pandas, and Matplotlib: These are essential libraries for data manipulation, analysis, and visualization in Python. Get comfortable with them as they are widely used in machine learning projects.
Study Linear Algebra and Statistics: Dive deeper into linear algebra and statistics, as they are fundamental to understanding many machine learning algorithms.
Introduction to Machine Learning: Start with courses or tutorials that introduce you to machine learning concepts such as supervised learning, unsupervised learning, and reinforcement learning.
Explore Scikit-learn: Scikit-learn is a powerful Python library for machine learning. Learn how to use its various algorithms for tasks like classification, regression, and clustering.
Hands-on Projects: Start working on small machine learning projects to apply what you've learned. Kaggle competitions and datasets are great resources for this.
Deep Learning Basics: Dive into deep learning concepts and frameworks like TensorFlow or PyTorch. Understand neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs).
Advanced Topics: Explore advanced machine learning topics such as ensemble methods, dimensionality reduction, and generative adversarial networks (GANs).
Stay Updated: Machine learning is a rapidly evolving field, so it's important to stay updated with the latest research papers, blogs, and conferences.
๐ง ๐Remember, the key to mastering machine learning is consistent practice and experimentation. Start with simple projects and gradually tackle more complex ones as you gain confidence and expertise. Good luck on your learning journey!
Learn Python: Start by learning Python, as it's the most popular language for machine learning. There are many resources available online, including tutorials, courses, and books.
Understand Basic Math: Familiarize yourself with basic mathematics concepts like algebra, calculus, and probability. This will form the foundation for understanding machine learning algorithms.
Learn NumPy, Pandas, and Matplotlib: These are essential libraries for data manipulation, analysis, and visualization in Python. Get comfortable with them as they are widely used in machine learning projects.
Study Linear Algebra and Statistics: Dive deeper into linear algebra and statistics, as they are fundamental to understanding many machine learning algorithms.
Introduction to Machine Learning: Start with courses or tutorials that introduce you to machine learning concepts such as supervised learning, unsupervised learning, and reinforcement learning.
Explore Scikit-learn: Scikit-learn is a powerful Python library for machine learning. Learn how to use its various algorithms for tasks like classification, regression, and clustering.
Hands-on Projects: Start working on small machine learning projects to apply what you've learned. Kaggle competitions and datasets are great resources for this.
Deep Learning Basics: Dive into deep learning concepts and frameworks like TensorFlow or PyTorch. Understand neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs).
Advanced Topics: Explore advanced machine learning topics such as ensemble methods, dimensionality reduction, and generative adversarial networks (GANs).
Stay Updated: Machine learning is a rapidly evolving field, so it's important to stay updated with the latest research papers, blogs, and conferences.
๐ง ๐Remember, the key to mastering machine learning is consistent practice and experimentation. Start with simple projects and gradually tackle more complex ones as you gain confidence and expertise. Good luck on your learning journey!
Generative AI is a multi-billion dollar opportunity!
There will be some winners and losers emerging directly or indirectly impacted by Gen AI ๐ ๐น
But, how to leverage it for the business impact? What are the right steps?
โ๏ธClearly define and communicate company-wide policies for generative AI use, providing access and guidelines to use these tools effectively and safely.
Your business probably falls into one of these types of categories, make sure to identify early and act accordingly:
๐ Uses public models with minimal customization at a lower cost.
๐ค Integrates existing models with internal systems for more customized results, suitable for scaling AI capabilities.
๐Develops a unique foundation model for a specific business case, which requires substantial investment.
โ๏ธDevelop financial AI capabilities to accurately calculate the costs and returns of AI initiatives, considering aspects such as multiple model/vendor costs, usage fees, and human oversight costs.
โ๏ธQuickly understand and leverage Generative AI for faster code development, streamlined debt management, and automation of routine IT tasks.
โ๏ธIntegrate generative AI models within your existing tech architecture and develop a robust data infrastructure and comprehensive policy management.
โ๏ธCreate a cross-functional AI platform team, developing a strategic approach to tool and service selection, and upskilling key roles.
โ๏ธUse existing services or open-source models as much as possible to develop your own capabilities, keeping in mind the significant costs of building your own models.
โ๏ธUpgrade enterprise tech architecture to accomodate generative AI models with existing AI models, apps, and data sources.
โ๏ธDevelop a data architecture that can process both structured and unstructured data.
โ๏ธEstablish a centralized, cross-functional generative AI platform team to provide models to product and application teams on demand.
โ๏ธUpskill tech roles, such as software developers, data engineers, MLOps engineers, ethical and security experts, and provide training for the broader non-tech workforce.
โ๏ธAssess the new risks and hav an ongoing mitigation practices to manage models, data, and policies.
โ๏ธFor many, it is important to link generative AI models to internal data sources for contextual understanding.
It is important to explore a tailored upskilling programs and talent management strategies.
There will be some winners and losers emerging directly or indirectly impacted by Gen AI ๐ ๐น
But, how to leverage it for the business impact? What are the right steps?
โ๏ธClearly define and communicate company-wide policies for generative AI use, providing access and guidelines to use these tools effectively and safely.
Your business probably falls into one of these types of categories, make sure to identify early and act accordingly:
๐ Uses public models with minimal customization at a lower cost.
๐ค Integrates existing models with internal systems for more customized results, suitable for scaling AI capabilities.
๐Develops a unique foundation model for a specific business case, which requires substantial investment.
โ๏ธDevelop financial AI capabilities to accurately calculate the costs and returns of AI initiatives, considering aspects such as multiple model/vendor costs, usage fees, and human oversight costs.
โ๏ธQuickly understand and leverage Generative AI for faster code development, streamlined debt management, and automation of routine IT tasks.
โ๏ธIntegrate generative AI models within your existing tech architecture and develop a robust data infrastructure and comprehensive policy management.
โ๏ธCreate a cross-functional AI platform team, developing a strategic approach to tool and service selection, and upskilling key roles.
โ๏ธUse existing services or open-source models as much as possible to develop your own capabilities, keeping in mind the significant costs of building your own models.
โ๏ธUpgrade enterprise tech architecture to accomodate generative AI models with existing AI models, apps, and data sources.
โ๏ธDevelop a data architecture that can process both structured and unstructured data.
โ๏ธEstablish a centralized, cross-functional generative AI platform team to provide models to product and application teams on demand.
โ๏ธUpskill tech roles, such as software developers, data engineers, MLOps engineers, ethical and security experts, and provide training for the broader non-tech workforce.
โ๏ธAssess the new risks and hav an ongoing mitigation practices to manage models, data, and policies.
โ๏ธFor many, it is important to link generative AI models to internal data sources for contextual understanding.
It is important to explore a tailored upskilling programs and talent management strategies.
๐๐จ๐ฐ ๐ญ๐จ ๐๐๐ ๐ข๐ง ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ ๐๐ ๐๐ง๐ญ๐ฌ
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐ ๐จ๐ฎ๐ง๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐จ๐ ๐๐๐ง๐๐ ๐๐ง๐ ๐๐๐
โช๏ธ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.
โช๏ธ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.
โช๏ธ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.
โช๏ธ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐๐๐ฏ๐๐ง๐๐๐ ๐๐จ๐ง๐๐๐ฉ๐ญ๐ฌ ๐ข๐ง ๐๐ ๐๐ ๐๐ง๐ญ๐ฌ
โช๏ธ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.
โช๏ธ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.
โช๏ธ Introduction to AI Agents: Get an overview of AI agentsโautonomous entities that use AI to perform tasks or solve problems.
โช๏ธ Agentic Frameworks: Explore popular tools like LangChain or OpenAIโs API to build and manage AI agents.
โช๏ธ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.
โช๏ธ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.
โช๏ธ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.
โช๏ธ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.
โช๏ธ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.
โช๏ธ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.
Join for more AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐ ๐จ๐ฎ๐ง๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐จ๐ ๐๐๐ง๐๐ ๐๐ง๐ ๐๐๐
โช๏ธ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.
โช๏ธ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.
โช๏ธ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.
โช๏ธ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.
๐น ๐๐๐ฏ๐๐ฅ ๐: ๐๐๐ฏ๐๐ง๐๐๐ ๐๐จ๐ง๐๐๐ฉ๐ญ๐ฌ ๐ข๐ง ๐๐ ๐๐ ๐๐ง๐ญ๐ฌ
โช๏ธ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.
โช๏ธ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.
โช๏ธ Introduction to AI Agents: Get an overview of AI agentsโautonomous entities that use AI to perform tasks or solve problems.
โช๏ธ Agentic Frameworks: Explore popular tools like LangChain or OpenAIโs API to build and manage AI agents.
โช๏ธ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.
โช๏ธ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.
โช๏ธ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.
โช๏ธ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.
โช๏ธ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.
โช๏ธ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.
Join for more AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Forwarded from Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
Whether youโre a student, fresher, or professional looking to upskill โ Microsoft has dropped a series of completely free courses to get you started.
Learn SQL ,Power BI & More In 2025
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/42FxnyM
Enroll For FREE & Get Certified ๐
Whether youโre a student, fresher, or professional looking to upskill โ Microsoft has dropped a series of completely free courses to get you started.
Learn SQL ,Power BI & More In 2025
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/42FxnyM
Enroll For FREE & Get Certified ๐
๐ฏ ๐๐ฟ๐ฒ๐ฒ ๐ง๐๐ฆ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐๐ฒ๐ฟ๐ ๐๐ฟ๐ฒ๐๐ต๐ฒ๐ฟ ๐ ๐๐๐ ๐ง๐ฎ๐ธ๐ฒ ๐๐ผ ๐๐ฒ๐ ๐๐ผ๐ฏ-๐ฅ๐ฒ๐ฎ๐ฑ๐๐
๐ฏ If Youโre a Fresher, These TCS Courses Are a Must-Do๐โ๏ธ
Stepping into the job market can be overwhelmingโbut what if you had certified, expert-backed training that actually prepares you?๐จโ๐โจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42Nd9Do
Donโt wait. Get certified, get confident, and get closer to landing your first jobโ ๏ธ
๐ฏ If Youโre a Fresher, These TCS Courses Are a Must-Do๐โ๏ธ
Stepping into the job market can be overwhelmingโbut what if you had certified, expert-backed training that actually prepares you?๐จโ๐โจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42Nd9Do
Donโt wait. Get certified, get confident, and get closer to landing your first jobโ ๏ธ
Tech Stack Roadmaps by Career Path ๐ฃ๏ธ
What to learn depending on the job youโre aiming for ๐
1. Frontend Developer
โฏ HTML, CSS, JavaScript
โฏ Git & GitHub
โฏ React / Vue / Angular
โฏ Responsive Design
โฏ Tailwind / Bootstrap
โฏ REST APIs
โฏ TypeScript (Bonus)
โฏ Testing (Jest, Cypress)
โฏ Deployment (Netlify, Vercel)
2. Backend Developer
โฏ Any language (Node.js, Python, Java, Go)
โฏ Git & GitHub
โฏ REST APIs & JSON
โฏ Databases (SQL & NoSQL)
โฏ Authentication & Security
โฏ Docker & CI/CD Basics
โฏ Unit Testing
โฏ Frameworks (Express, Django, Spring Boot)
โฏ Deployment (Render, Railway, AWS)
3. Full-Stack Developer
โฏ Everything from Frontend + Backend
โฏ MVC Architecture
โฏ API Integration
โฏ State Management (Redux, Context API)
โฏ Deployment Pipelines
โฏ Git Workflows (PRs, Branching)
4. Data Analyst
โฏ Excel, SQL
โฏ Python (Pandas, NumPy)
โฏ Data Visualization (Matplotlib, Seaborn)
โฏ Power BI / Tableau
โฏ Statistics & EDA
โฏ Jupyter Notebooks
โฏ Business Acumen
5. DevOps Engineer
โฏ Linux & Shell Scripting
โฏ Git & GitHub
โฏ Docker & Kubernetes
โฏ CI/CD Tools (Jenkins, GitHub Actions)
โฏ Cloud (AWS, GCP, Azure)
โฏ Monitoring (Prometheus, Grafana)
โฏ IaC (Terraform, Ansible)
6. Machine Learning Engineer
โฏ Python + Math (Linear Algebra, Stats)
โฏ Scikit-learn, Pandas, NumPy
โฏ Deep Learning (TensorFlow/PyTorch)
โฏ ML Lifecycle (Train, Tune, Deploy)
โฏ Model Evaluation
โฏ MLOps (MLflow, Docker, FastAPI)
React with โค๏ธ if you found this helpful โ content like this is rare to find on the internet!
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
ENJOY LEARNING ๐๐
What to learn depending on the job youโre aiming for ๐
1. Frontend Developer
โฏ HTML, CSS, JavaScript
โฏ Git & GitHub
โฏ React / Vue / Angular
โฏ Responsive Design
โฏ Tailwind / Bootstrap
โฏ REST APIs
โฏ TypeScript (Bonus)
โฏ Testing (Jest, Cypress)
โฏ Deployment (Netlify, Vercel)
2. Backend Developer
โฏ Any language (Node.js, Python, Java, Go)
โฏ Git & GitHub
โฏ REST APIs & JSON
โฏ Databases (SQL & NoSQL)
โฏ Authentication & Security
โฏ Docker & CI/CD Basics
โฏ Unit Testing
โฏ Frameworks (Express, Django, Spring Boot)
โฏ Deployment (Render, Railway, AWS)
3. Full-Stack Developer
โฏ Everything from Frontend + Backend
โฏ MVC Architecture
โฏ API Integration
โฏ State Management (Redux, Context API)
โฏ Deployment Pipelines
โฏ Git Workflows (PRs, Branching)
4. Data Analyst
โฏ Excel, SQL
โฏ Python (Pandas, NumPy)
โฏ Data Visualization (Matplotlib, Seaborn)
โฏ Power BI / Tableau
โฏ Statistics & EDA
โฏ Jupyter Notebooks
โฏ Business Acumen
5. DevOps Engineer
โฏ Linux & Shell Scripting
โฏ Git & GitHub
โฏ Docker & Kubernetes
โฏ CI/CD Tools (Jenkins, GitHub Actions)
โฏ Cloud (AWS, GCP, Azure)
โฏ Monitoring (Prometheus, Grafana)
โฏ IaC (Terraform, Ansible)
6. Machine Learning Engineer
โฏ Python + Math (Linear Algebra, Stats)
โฏ Scikit-learn, Pandas, NumPy
โฏ Deep Learning (TensorFlow/PyTorch)
โฏ ML Lifecycle (Train, Tune, Deploy)
โฏ Model Evaluation
โฏ MLOps (MLflow, Docker, FastAPI)
React with โค๏ธ if you found this helpful โ content like this is rare to find on the internet!
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
ENJOY LEARNING ๐๐
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ ๐๐ถ๐๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ฒ ๐ฏ๐ ๐๐ผ๐ผ๐ด๐น๐ฒ โ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐๐๐ต๐ผ๐ป ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐๐
If youโre starting your journey into data analytics, Python is the first skill you need to master๐จโ๐
A free, beginner-friendly course by Google on Kaggle, designed to take you from zero to data-ready with hands-on coding practice๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4k24zGl
Just start coding right in your browserโ ๏ธ
If youโre starting your journey into data analytics, Python is the first skill you need to master๐จโ๐
A free, beginner-friendly course by Google on Kaggle, designed to take you from zero to data-ready with hands-on coding practice๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4k24zGl
Just start coding right in your browserโ ๏ธ
Forwarded from Python Projects & Resources
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฌ๐ผ๐ ๐๐ฎ๐ปโ๐ ๐ ๐ถ๐๐๐
Microsoft Learn is offering 5 must-do courses for aspiring data scientists, absolutely free๐ฅ๐
These self-paced learning modules are designed by industry experts and cover everything from Python and ML to Microsoft Fabric and Azure๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iSWjaP
Job-ready content that gets you resultsโ ๏ธ
Microsoft Learn is offering 5 must-do courses for aspiring data scientists, absolutely free๐ฅ๐
These self-paced learning modules are designed by industry experts and cover everything from Python and ML to Microsoft Fabric and Azure๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iSWjaP
Job-ready content that gets you resultsโ ๏ธ