250. Двое играют на шахматной доске 8×8. Первый -- ставит на любую клетку пешку. Далее они по очереди ее двигают на любую соседнюю клетку по вертикали или горизонтали, причем нельзя ставить пешку на поле, где она уже побывала. Проигрывает тот, кому некуда ходить. Кто выиграет при правильной игре -- первый или второй?
#олмат
#матигры
#олмат
#матигры
267. Сто карточек в стопке пронумерованы числами от 1 до 100 сверху вниз. Двое играющих по очереди снимают сверху по одной или несколько карточек и отдают противнику. Выигрывает тот, у кого первого произведение всех чисел на карточках станет кратно 1000000. Может ли кто-то из игроков всегда выигрывать независимо от игры противника?
#олмат
#матигры
#олмат
#матигры
284. На бесконечной плоскости расположены фишка-волк и 2000 фишек-овец. Двое ходят по очереди: один игрок передвигает волка, а другой одну из овец. И волк, и овцы передвигаются за один ход в любую сторону не более чем на один метр. Верно ли, что при любой первоначальной позиции, волк поймает хотя бы одну овцу?
#олмат
#матигры
#олмат
#матигры
312. Четверо пиратов: капитан, старшина, матрос и юнга (звания идут в порядке убывания значимости) нашли клад со 100 золотыми монетами. Им нужно разделить эти 100 монет между собой. Этот процесс происходит следующим образом: сначала капитан выбирает, как нужно разделить монеты среди четверых моряков (каждому достается целое число монет) и происходит голосование в котором участвуют все. Если большинство голосов против такого разделения, то капитана убивают, иначе, пираты получают соответствующее количество монет. Если капитана убили, то свой вариант предлагает старшина и опять происходит голосование. Так происходит и далее. Какое наибольшее количество монет может гарантировать себе капитан, если все пираты действуют наиболее оптимальным образом? Дополнительное условие: если невозможно увеличить собственную выгоду, то пират действует так, чтобы поддержать моряка меньшей значимости. Например: при всех прочих равных, юнга будет действовать в интересах матроса, а не старшины.
#олмат
#матигры
#олмат
#матигры
438. Двое игроков отмечают точки плоскости. Сначала первый отмечает точку красным цветом, затем второй отмечает 100 точек синим, затем первый снова одну точку красным, второй 100 точек синим и так далее. (Перекрашивать уже отмеченные точки нельзя.) Докажите, что первый может построить правильный треугольник с красными вершинами.
#олмат
#матигры
#олмат
#матигры
443. Имеются фишки с цифрами 1, 2, 3, 4, 5, 6, 7, 8, 9. Рома и Даля по очереди берут фишки (каждый ход по одной фишке). Выигрывает тот игрок, который первым соберёт у себя три фишки с суммой 15. (Если ни у одного игрока таких фишек не будет, фиксируется ничья.) Начинает Даля. Может ли один из игроков обеспечить себе победу? Ничью?
#олмат
#матигры
#олмат
#матигры
474. На доске записано число 111...111 (всего 99 единиц). Вика и Наташа играют в следующую игру, делая ходы по очереди. Начинает Вика. За ход игрок либо записывает ноль вместо одной из единиц, кроме первой и последней, либо стирает один из нулей. Проигрывает тот, после чьего хода на доске в первый раз появится число, делящееся на 11. Кто выигрывает при правильной игре?
#олмат
#матигры
#олмат
#матигры
487. Два бога по очереди выписывают цифры бесконечной десятичной дроби. Первый своим ходом приписывает в хвост любое конечное число цифр, второй -- одну. Они успевают сделать все ходы (то есть, бесконечно много) за час. Если в итоге получится периодическая дробь (без предпериода), выигрывает первый, иначе -- второй. Кто из них может выиграть, как бы ни играл соперник?
#олмат
#матигры
#олмат
#матигры
502. Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?
#олмат
#матигры
#оценкаплюспример
#олмат
#матигры
#оценкаплюспример