Ежидзе
1.48K subscribers
15 photos
155 links
Олимпиадная математика с юмором!

Авторы канала:
Петров Сергей - @Chuckchaness
Жуковский Никита - @tavukchorbasi

Чат канала - @ezhidze_chat
Присылайте нам свои задачи - @ezhidze_problems_bot
Download Telegram
October 19, 2017
​​182. Двое по очереди красят вершины шестиугольной призмы в белый и черный цвета. За один ход можно покрасить не покрашенную вершину в белый или черный цвет, причем никакое ребро не должно соединять одноцветные точки. Кто выигрывает при правильной игре?

#олмат
#матигры
November 28, 2017
December 2, 2017
February 2, 2018
​​267. Сто карточек в стопке пронумерованы числами от 1 до 100 сверху вниз. Двое играющих по очереди снимают сверху по одной или несколько карточек и отдают противнику. Выигрывает тот, у кого первого произведение всех чисел на карточках станет кратно 1000000. Может ли кто-то из игроков всегда выигрывать независимо от игры противника?

#олмат
#матигры
February 17, 2018
February 27, 2018
284. На бесконечной плоскости расположены фишка-волк и 2000 фишек-овец. Двое ходят по очереди: один игрок передвигает волка, а другой одну из овец. И волк, и овцы передвигаются за один ход в любую сторону не более чем на один метр. Верно ли, что при любой первоначальной позиции, волк поймает хотя бы одну овцу?

#олмат
#матигры
March 1, 2018
291. Паук и муха бегают по прямой. Известно, что скорость паука в двое больше скорости мухи. Но паук слепой и не видит муху, если только не находится с ней в одной точке. Верно ли, что паук всегда сможет догнать и съесть муху, где бы она ни находилась в начальный момент?

#олмат
#матигры
March 5, 2018
​​299. Никита и Аня по очереди ломают шоколадку 6×8, Никита начинает. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет при правильной игре и как ему для этого надо действовать?

#олмат
#матигры
March 13, 2018
​​308. Есть куча из n спичек. Играют двое, ходят по очереди, за ход разрешается брать от 1 до 10 спичек, выигрывает взявший последнюю спичку. При каких n выигрывает начинающий?

#олмат
#матигры
March 23, 2018
312. Четверо пиратов: капитан, старшина, матрос и юнга (звания идут в порядке убывания значимости) нашли клад со 100 золотыми монетами. Им нужно разделить эти 100 монет между собой. Этот процесс происходит следующим образом: сначала капитан выбирает, как нужно разделить монеты среди четверых моряков (каждому достается целое число монет) и происходит голосование в котором участвуют все. Если большинство голосов против такого разделения, то капитана убивают, иначе, пираты получают соответствующее количество монет. Если капитана убили, то свой вариант предлагает старшина и опять происходит голосование. Так происходит и далее. Какое наибольшее количество монет может гарантировать себе капитан, если все пираты действуют наиболее оптимальным образом? Дополнительное условие: если невозможно увеличить собственную выгоду, то пират действует так, чтобы поддержать моряка меньшей значимости. Например: при всех прочих равных, юнга будет действовать в интересах матроса, а не старшины.

#олмат
#матигры
March 25, 2018
April 2, 2018
April 11, 2018
May 25, 2018
​​369. Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве pⁿ, где p – простое число, n = 0, 1, 2, 3, ... . Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?

#олмат #матигры
June 6, 2018
November 7, 2018
November 20, 2018
​​474. На доске записано число 111...111 (всего 99 единиц). Вика и Наташа играют в следующую игру, делая ходы по очереди. Начинает Вика. За ход игрок либо записывает ноль вместо одной из единиц, кроме первой и последней, либо стирает один из нулей. Проигрывает тот, после чьего хода на доске в первый раз появится число, делящееся на 11. Кто выигрывает при правильной игре?

#олмат
#матигры
March 10, 2019
​​487. Два бога по очереди выписывают цифры бесконечной десятичной дроби. Первый своим ходом приписывает в хвост любое конечное число цифр, второй -- одну. Они успевают сделать все ходы (то есть, бесконечно много) за час. Если в итоге получится периодическая дробь (без предпериода), выигрывает первый, иначе -- второй. Кто из них может выиграть, как бы ни играл соперник?

#олмат
#матигры
September 15, 2019
​​502. Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?

#олмат
#матигры
#оценкаплюспример
December 19, 2022