Ежидзе
1.52K subscribers
15 photos
153 links
Олимпиадная математика с юмором!

Авторы канала:
Петров Сергей - @Chuckchaness
Жуковский Никита - @tavukchorbasi

Чат канала - @ezhidze_chat
Присылайте нам свои задачи - @ezhidze_problems_bot
Download Telegram
457. Среди 12 футбольных команд проводится турнир в один круг. Уже сыграно 23 матча. Докажите, что найдется тройка команд, в которой еще никто ни с кем не играл.

#олмат
#турниры(нет)
​​458. Даня отметил на плоскости 100 точек, никакие три не лежат на одной прямой, и провел все возможные отрезки с концами в этих точках. Артем нарисовал прямую, которая не проходит через данные точки. Могло ли оказаться, что эта прямая пересекает ровно треть из отрезков, нарисованных Даней?

#олмат
#текстовыезадачи
​​459. Оля утверждает, что знает такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число. Не ошибается ли Оля?

#олмат
#тч
​​460. Одиннадцати мудрецам завязывают глаза и надевают каждому на голову колпак одного из 1000 цветов. После этого им глаза развязывают, и каждый видит все колпаки, кроме своего. Затем одновременно каждый показывает остальным одну из двух карточек — белую или чёрную. После этого все должны одновременно назвать цвет своих колпаков. Удастся ли это?

#олмат
#алгоритмы
461. Число 670 обладает таким свойством: изменив любую его цифру на 1 можно получить число, кратное 11. Найдите наименьшее четырехзначное число, обладающее таким свойством.

#олмат
#тч
462. На окружности стоят 50 единиц. За одну операцию можно выбрать 4 подряд стоящих числа и из любого из них вычесть единицу, одновременно прибавив единицу к трём остальным. Могут ли через несколько таких операций все числа стать равными 100?

#олмат
#алгебра
​​463. Может ли ладья обойти все клетки доски 10×10, побывав на каждой клетке ровно по разу, чередуя ходы длиной в одну и в две клетки? (Считается, что, делая ход длиной в две клетки, ладья не проходит по промежуточной клетке.)

#олмат
#шахматы
​​464. (Лемма Архимеда) Окружность α касается окружности ω в точке А, а хорды ВС касается в точке D. Прямая AD пересекает окружность ω в точке Е. Докажите, что точка Е — середина дуги ВЕС.

#олмат
#геом
465. Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N четно.

#олмат
#алгебра
466. Первоначально на доске написано натуральное число А. Разрешается прибавить к нему любой из его делителей, отличный от 1 и А. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа А = 4 можно с помощью таких операций получить любое наперед заданное составное число.

#олмат
#тч
​​467. На доске написано число 1234. Его можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из них не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью нескольких таких операций получить число 2019?

#олмат
#тч
​​468. На двух противоположных гранях игрального кубика нарисовано по одной точке, на двух других противоположных -- по две точки, и на двух оставшихся -- по три точки. Из восьми таких кубиков сложили куб 2×2×2 и посчитали суммарное число точек на каждой из шести его граней. Могло ли получиться шесть последовательных чисел?

#олмат
#текстовыезадачи
​​469. На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путешественник встретил троих островитян и спросил каждого из них: ''Сколько рыцарей среди твоих спутников?''. Первый ответил: ''Ни одного''. Второй сказал: ''Один''. Что сказал третий?

#олмат
#логика
​​470. В 8 вершинах некоторого куба записали числа 1, 2, 3, ..., 8. Потом на каждом ребре написали разность двух чисел на его концах (из большего вычитали меньшее). Какое наименьшее количество разных чисел могло оказаться на рёбрах?

#олмат
#оценкаплюспример
​​471. На шахматной доске в левом верхнем углу стоит робот. Ему надо попасть в правый нижний квадрат. За один ход он может переходить на любую соседнюю клетку (только не по диагонали). На доске есть непроходимый квадрат. Когда он получает инструкцию, например, вправо, а там стоит этот квадрат, то он остаётся на месте и выполняет следующую инструкцию по алгоритму. Придумайте алгоритм (конечную последовательность шагов), наверняка доставляющий робота в правый нижний квадрат (инструкции, направляющие робота за пределы доски, игнорируются).

#олмат
#алгоритмы
​​472. На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?

#олмат
#взвешивания
​​473. Делитель натурального числа называется собственным, если он не равен единице и самому числу. Найдите все числа, у которых сумма двух наибольших собственных делителей равна 2019.

#олмат
#тч
​​474. На доске записано число 111...111 (всего 99 единиц). Вика и Наташа играют в следующую игру, делая ходы по очереди. Начинает Вика. За ход игрок либо записывает ноль вместо одной из единиц, кроме первой и последней, либо стирает один из нулей. Проигрывает тот, после чьего хода на доске в первый раз появится число, делящееся на 11. Кто выигрывает при правильной игре?

#олмат
#матигры
​​475. Шерлок Холмс расследует преступление, в котором замешаны 120 человек, среди них один — преступник, а один — свидетель. Каждый день детектив может пригласить к себе одного или нескольких людей и если среди них есть свидетель, но нет преступника, то свидетель скажет, кто преступник. Как гарантированно раскрыть преступление за 9 дней?

#олмат
#алгоритмы
476. Докажите, что существует бесконечно много троек натуральных чисел (m, n, k), таких, что m, n, k > 1 и m! ⋅ n! = k!.

#олмат
#тч